72 research outputs found

    Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation

    Get PDF
    The yeast Set2 histone methyltransferase is a critical enzyme that plays a number of key roles in gene transcription and DNA repair. Recently, the human homologue, SETD2, was found to be recurrently mutated in a significant percentage of renal cell carcinomas, raising the possibility that the activity of SETD2 is tumor-suppressive. Using budding yeast and human cell line model systems, we examined the functional significance of two evolutionarily conserved residues in SETD2 that are recurrently mutated in human cancers. Whereas one of these mutations (R2510H), located in the Set2 Rpb1 interaction domain, did not result in an observable defect in SETD2 enzymatic function, a second mutation in the catalytic domain of this enzyme (R1625C) resulted in a complete loss of histone H3 Lys-36 trimethylation (H3K36me3). This mutant showed unchanged thermal stability as compared with the wild type protein but diminished binding to the histone H3 tail. Surprisingly, mutation of the conserved residue in Set2 (R195C) similarly resulted in a complete loss of H3K36me3 but did not affect dimethylated histone H3 Lys-36 (H3K36me2) or functions associated with H3K36me2 in yeast. Collectively, these data imply a critical role for Arg-1625 in maintaining the protein interaction with H3 and specific H3K36me3 function of this enzyme, which is conserved from yeast to humans. They also may provide a refined biochemical explanation for how H3K36me3 loss leads to genomic instability and cancer

    High Burden of Unrecognized Atrial Fibrillation in Rural India: An Innovative Community-Based Cross-Sectional Screening Program

    Get PDF
    BACKGROUND: Atrial fibrillation, the world\u27s most common arrhythmia, is a leading risk factor for stroke, a disease striking nearly 1.6 million Indians annually. Early detection and management of atrial fibrillation is a promising opportunity to prevent stroke but widespread screening programs in limited resource settings using conventional methods is difficult and costly. OBJECTIVE: The objective of this study is to screen people for atrial fibrillation in rural western India using a US Food and Drug Administration-approved single-lead electrocardiography device, Alivecor. METHODS: Residents from 6 villages in Anand District, Gujarat, India, comprised the base population. After obtaining informed consent, a team of trained research coordinators and community health workers enrolled a total of 354 participants aged 50 years and older and screened them at their residences using Alivecor for 2 minutes on 5 consecutive days over a period of 6 weeks beginning June, 2015. RESULTS: Almost two-thirds of study participants were 55 years or older, nearly half were female, one-third did not receive any formal education, and more than one-half were from households earning less than US $2 per day. Twelve participants screened positive for atrial fibrillation yielding a sample prevalence of 5.1% (95% CI 2.7-8.7). Only one participant had persistent atrial fibrillation throughout all of the screenings, and 9 screened positive only once. CONCLUSIONS: Our study suggests a prevalence of atrial fibrillation in this Indian region (5.1%) that is markedly higher than has been previously reported in India and similar to the prevalence estimates reported in studies of persons from North America and Europe. Historically low reported burden of atrial fibrillation among individuals from low and middle-income countries may be due to a lack of routine screening. Mobile technologies may help overcome resource limitations for atrial fibrillation screening in underserved and low-resource settings

    Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome

    Get PDF
    Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. Am J Physiol Endocrinol Metab 315: E1087–E1097, 2018. First published August 21, 2018; doi:10.1152/ajpendo.00058.2018.β€”A 2-day workshop organized by the National Institutes of Health and U.S. Department of Agriculture included 16 presentations focused on the role of diet in alterations of the gastrointestinal microbiome, primarily that of the colon. Although thousands of research projects have been funded by U.S. federal agencies to study the intestinal microbiome of humans and a variety of animal models, only a minority addresses dietary effects, and a small subset is described in sufficient detail to allow reproduction of a study. Whereas there are standards being developed for many aspects of microbiome studies, such as sample collection, nucleic acid extraction, data handling, etc., none has been proposed for the dietary component; thus this workshop focused on the latter specific point. It is important to foster rigor in design and reproducibility of published studies to maintain high quality and enable designs that can be compared in systematic reviews. Speakers addressed the influence of the structure of the fermentable carbohydrate on the microbiota and the variables to consider in design of studies using animals, in vitro models, and human subjects. For all types of studies, strengths and weaknesses of various designs were highlighted, and for human studies, comparisons between controlled feeding and observational designs were discussed. Because of the lack of published, best-diet formulations for specific research questions, the main recommendation is to describe dietary ingredients and treatments in as much detail as possible to allow reproduction by other scientists

    Scanning Tunneling Optical Resonance Microscopy Developed

    Get PDF
    The ability to determine the in situ optoelectronic properties of semiconductor materials has become especially important as the size of device architectures has decreased and the development of complex microsystems has increased. Scanning Tunneling Optical Resonance Microscopy, or STORM, can interrogate the optical bandgap as a function of its position within a semiconductor micro-structure. This technique uses a tunable solidstate titanium-sapphire laser whose output is "chopped" using a spatial light modulator and is coupled by a fiber-optic connector to a scanning tunneling microscope in order to illuminate the tip-sample junction. The photoenhanced portion of the tunneling current is spectroscopically measured using a lock-in technique. The capabilities of this technique were verified using semiconductor microstructure calibration standards that were grown by organometallic vapor-phase epitaxy. Bandgaps characterized by STORM measurements were found to be in good agreement with the bulk values determined by transmission spectroscopy and photoluminescence and with the theoretical values that were based on x-ray diffraction results

    Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations

    Th2 Cell-Intrinsic Hypo-Responsiveness Determines Susceptibility to Helminth Infection

    Get PDF
    The suppression of protective Type 2 immunity is a principal factor driving the chronicity of helminth infections, and has been attributed to a range of Th2 cell-extrinsic immune-regulators. However, the intrinsic fate of parasite-specific Th2 cells within a chronic immune down-regulatory environment, and the resultant impact such fate changes may have on host resistance is unknown. We used IL-4gfp reporter mice to demonstrate that during chronic helminth infection with the filarial nematode Litomosoides sigmodontis, CD4(+) Th2 cells are conditioned towards an intrinsically hypo-responsive phenotype, characterised by a loss of functional ability to proliferate and produce the cytokines IL-4, IL-5 and IL-2. Th2 cell hypo-responsiveness was a key element determining susceptibility to L. sigmodontis infection, and could be reversed in vivo by blockade of PD-1 resulting in long-term recovery of Th2 cell functional quality and enhanced resistance. Contrasting with T cell dysfunction in Type 1 settings, the control of Th2 cell hypo-responsiveness by PD-1 was mediated through PD-L2, and not PD-L1. Thus, intrinsic changes in Th2 cell quality leading to a functionally hypo-responsive phenotype play a key role in determining susceptibility to filarial infection, and the therapeutic manipulation of Th2 cell-intrinsic quality provides a potential avenue for promoting resistance to helminths

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivoresβ€”two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, PΒ =Β 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, PΒ =Β 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, PΒ =Β 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    • …
    corecore