178 research outputs found

    Age-related changes in human ceruloplasmin. Evidence for oxidative modifications.

    Get PDF
    Human plasma or serum from donors of age comprised between 15 and 95 years was analyzed for paramagnetic and total copper content, as well as for immunoreactive ceruloplasmin content and oxidase activity. All parameters were essentially unaltered, except the paramagnetic copper content, which increased 2-fold upon aging. A dramatic change of the electron paramagnetic resonance spectrum due to ceruloplasmin occurred in individuals over 65 years old and was associated with both an increase of the type 1 copper signal intensity and the appearance of new resonances of a type 2 copper species. Ceruloplasmin was isolated from either young or old donors. Spectroscopic analyses of the isolated proteins confirmed the tendency of type 1 copper to stay reduced in the "young" and oxidized in the "old" protein. The type 2 copper signal observed in most young ceruloplasmin samples was different from the species invariably present in the old protein. The magnetic parameters of the latter species were more consistent with a partially reduced trinuclear copper site. In vitro limited proteolysis resulted in identical fragmentation patterns and kinetics in both proteins. However, changes of the net electric charge were detected in the fragments of the protein isolated from aged individuals, which exhibited a carbonyl content of 0.6 mol of carbonyl/mol of protein. The same pattern of modifications, including a higher carbonyl content (0.65 versus 0.2 mol of carbonyl/mol of protein), could be reproduced by exposure of the young protein to the metal-catalyzed oxidation system iron/ascorbate. These results suggest that during aging ceruloplasmin is subjected to oxidative modifications which are likely to be the source of conformational changes around the copper sites leading to an intramolecular electron rearrangement among the various copper sites

    Network centrality: an introduction

    Full text link
    Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.Comment: Book Chapter in "From nonlinear dynamics to complex systems: A Mathematical modeling approach" by Springe

    Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice

    Get PDF
    We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al

    Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats.</p> <p>Methods</p> <p>Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls.</p> <p>Results</p> <p>Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39).</p> <p>Conclusion</p> <p>Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats.</p

    Charting the NF-κB Pathway Interactome Map

    Get PDF
    Inflammation is part of a complex physiological response to harmful stimuli and pathogenic stress. The five components of the Nuclear Factor κB (NF-κB) family are prominent mediators of inflammation, acting as key transcriptional regulators of hundreds of genes. Several signaling pathways activated by diverse stimuli converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. It is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. Scope of the present analysis is to provide a wider, systemic picture of the NF-κB signaling system. Data from different sources such as literature, functional enrichment web resources, protein-protein interaction and pathway databases have been gathered, curated, integrated and analyzed in order to reconstruct a single, comprehensive picture of the proteins that interact with, and participate to the NF-κB activation system. Such a reconstruction shows that the NF-κB interactome is substantially different in quantity and quality of components with respect to canonical representations. The analysis highlights that several neglected but topologically central proteins may play a role in the activation of NF-κB mediated responses. Moreover the interactome structure fits with the characteristics of a bow tie architecture. This interactome is intended as an open network resource available for further development, refinement and analysis

    The immune system and the impact of zinc during aging

    Get PDF
    The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome

    Understanding how we age: insights into inflammaging

    Get PDF
    Inflammaging is characterized by the upregulation of the inflammatory response that occurs with advancing age; its roots are strongly embedded in evolutionary theory. Inflammaging is believed to be a consequence of a remodelling of the innate and acquired immune system, resulting in chronic inflammatory cytokine production. Complex interrelated genetic, environmental and age-related factors determine an individual’s vulnerability or resilience to inflammaging. These factors include polymorphisms to the promoter regions of cytokines, cytokine receptors and antagonists, age-related decreases in autophagy and increased adiposity. Anti-inflammaging describes the upregulation of the hypothalamic-pituitary axis in response to inflammaging, leading to higher levels of cortisol, which in turn may be detrimental, contributing to less successful ageing and frailty. This may be countered by the adrenal steroid dehydroepiandrosterone, which itself declines with age, leaving certain individuals more vulnerable. Inflammaging and anti-inflammaging have both been linked with a number of age-related outcomes, including chronic morbidity, functional decline and mortality. This important area of research offers unique insights into the ageing process and the potential for screening and targeted interventions
    corecore