3,993 research outputs found

    Cranial sutures work collectively to distribute strain throughout the reptile skull

    Get PDF
    The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles

    The biomechanical role of the chondrocranium and sutures in a lizard cranium

    Get PDF
    The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae. We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocraniumare greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocraniumunless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending

    Silicon and III-V compound nanotubes: structural and electronic properties

    Get PDF
    Unusual physical properties of single-wall carbon nanotubes have started a search for similar tubular structures of other elements. In this paper, we present a theoretical analysis of single-wall nanotubes of silicon and group III-V compounds. Starting from precursor graphene-like structures we investigated the stability, energetics and electronic structure of zigzag and armchair tubes using first-principles pseudopotential plane wave method and finite temperature ab-initio molecular dynamics calculations. We showed that (n,0) zigzag and (n,n) armchair nanotubes of silicon having n > 6 are stable but those with n < 6 can be stabilized by internal or external adsorption of transition metal elements. Some of these tubes have magnetic ground state leading to spintronic properties. We also examined the stability of nanotubes under radial and axial deformation. Owing to the weakness of radial restoring force, stable Si nanotubes are radially soft. Undeformed zigzag nanotubes are found to be metallic for 6 < n < 11 due to curvature effect; but a gap starts to open for n > 12. Furthermore, we identified stable tubular structures formed by stacking of Si polygons. We found AlP, GaAs, and GaN (8,0) single-wall nanotubes stable and semiconducting. Our results are compared with those of single-wall carbon nanotubes.Comment: 11 pages, 10 figure

    In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri

    Get PDF
    In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology

    Chronic otorrhoea: Spectrum of microorganisms and antibiotic sensitivity in a South African cohort

    Get PDF
    BACKGROUND: Chronic otorrhoea is difficult to treat, with treatment in South Africa (SA) being protocol driven and generally initiated at the primary healthcare level. There is a lack of local studies that focus on the bacteriology and antimicrobial sensitivities of chronic otorrhoea, which underpins the management advice offered. AIMS: To determine the microbiological profile and antimicrobial susceptibility of patients with chronic otorrhoea and the validity of the Department of Health's (DoH) current guideline. METHODS: We conducted a prospective study at Groote Schuur Hospital from 2005 to 2009. We included patients with chronic otorrhoea classified as either otitis media or otitis externa, according to our definitions. Pus swabs were taken, from which microorganisms were cultured and tested for antimicrobial susceptibility. RESULTS: Of 79 patients with otorrhoea, 50 had otitis media, 21 had otitis externa and the condition was not determined in 8 patients. The most common organism isolated with otitis media was Proteus mirabilis (18/50; 36%) and with otitis externa, Pseudomonas aeruginosa (7/21; 33%). Otorrhoea had a different microbial spectrum compared with international reports, with methicillin-resistant Staphylococcus aureus infection in a single patient. The organisms isolated were susceptible mainly to fluoroquinolones (96%) and aminoglycosides (81%). CONCLUSION: Amoxicillin is a poor choice of antibiotic due to its low sensitivity, which calls into question the current DoH guideline for otorrhoea. Antimicrobial treatment protocols should be based on local data and be revisited from time to time. This study suggests that, should first-line treatment fail, an antibiotic with Gram-negative cover, e.g. a topical fluoroquinolone, should be considered

    Large Magnetic Susceptibility Anisotropy of Metallic Carbon Nanotubes

    Full text link
    Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting single-walled carbon nanotubes. This large anisotropy is consistent with our calculations and can be understood in terms of large orbital paramagnetism of electrons in metallic nanotubes arising from the Aharonov-Bohm-phase-induced gap opening in a parallel field. We also compare our values with previous work for semiconducting nanotubes, which confirm a break from the prediction that the magnetic susceptibility anisotropy increases linearly with the diameter.Comment: 4 pages, 4 figure

    Petrology of Chondrule Rims in Yamato-791498 and Asuka-881828, the Least-Altered CR Chondrites in the Japanese NIPR Collection

    Get PDF
    CR chondrites are a group of car-bonaceous chondrites with well-preserved records of formation of their components in the solar nebula. The CR chondrites have undergone a wide range of aqueous alteration from nearly anhydrous (CR2.8 or CR3.0) to extensive recrystallization of primary minerals, including replacement of coarse-grained silicates in chondrules (CR2.0). At the same time, CRs have experienced only minor thermal metamorphism except for rare CR6 samples. Identifying minimally altered CR chondrites is a priority because they preserve (1) relatively pristine records of the solar nebula and (2) minerals and textures at the beginning stages of aqueous alteration. Here we report the petrologic characteristics of Y-791498 and A-881828 as the least aqueously altered CR chondrites in the Japanese NIPR meteorite collection. Previous studies have shown that fine-grained rims on chondrules are indicators of incipient alteration of primitive CR chondrites, there-fore we focus on rims around chondrules in the two meteorites
    corecore