
 on September 29, 2016http://rsif.royalsocietypublishing.org/Downloaded from  on September 29, 2016http://rsif.royalsocietypublishing.org/Downloaded from  on September 29, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
rsif.royalsocietypublishing.org
Research
Cite this article: Curtis N, Jones MEH, Evans

SE, O’Higgins P, Fagan MJ. 2013 Cranial sutures

work collectively to distribute strain through-

out the reptile skull. J R Soc Interface 10:

20130442.

http://dx.doi.org/10.1098/rsif.2013.0442
Received: 14 May 2013

Accepted: 4 June 2013
Subject Areas:
bioengineering, biomechanics

Keywords:
cranial suture, multibody dynamics analysis,

Sphenodon, finite-element analysis
Author for correspondence:
Neil Curtis

e-mail: n.curtis@hull.ac.uk
& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Cranial sutures work collectively
to distribute strain throughout
the reptile skull

Neil Curtis1, M. E. H. Jones2, S. E. Evans2, P. O’Higgins3 and M. J. Fagan1

1Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
2Research Department of Cell and Developmental Biology, University College London, Gower Street,
London WCIE 6BT, UK
3Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York YO10 5DD, UK

The skull is composed of many bones that come together at sutures. These

sutures are important sites of growth, and as growth ceases some become

fused while others remain patent. Their mechanical behaviour and how they

interact with changing form and loadings to ensure balanced craniofacial devel-

opment is still poorly understood. Early suture fusion often leads to disfiguring

syndromes, thus is it imperative that we understand the function of sutures

more clearly. By applying advanced engineering modelling techniques, we

reveal for the first time that patent sutures generate a more widely distributed,

high level of strain throughout the reptile skull. Without patent sutures, large

regions of the skull are only subjected to infrequent low-level strains that

could weaken the bone and result in abnormal development. Sutures are there-

fore not only sites of bone growth, but could also be essential for the modulation

of strains necessary for normal growth and development in reptiles.

1. Introduction
Skulls are made up of many bones that are connected by fibrocellular joints at

sutures [1–6]. While the term ‘suture’ is sometimes used to refer solely to the

soft tissue component of the joint [7], we use this term to include both the soft

tissue component and the bone at the suture edges [8]. Sutures are sites of apposi-

tional bone growth [4,6,9–12] and are crucial in the developing skull, where their

premature fusion can lead to abnormal growth [13–18]. As skulls mature, the

sutures may become fused yet some remain patent throughout life [1,19],

suggesting that they have an additional role. In some non-mammalian tetrapods,

the joint between bones at patent sutures can be so large and flexible that the

suture contributes to movements within the skull [20,21]. Nonetheless, more gen-

erally, the retention of patent sutures in mature skulls is thought to be related to

stress transfer and/or stress dampening [5,22,23]. However, although the relative

importance of each of these roles continues to be debated, their possible inter-

actions merit more serious consideration. Thus, during growth patent sutures

contribute not only to bone apposition but, given their patency and physical prop-

erties, must inevitably also impact on skull mechanics as they do in adults. In turn,

the contribution of sutures to load transfer and to stress and strain modification

within the skull [24–27] is likely to impact on cranial bone growth [28].

Virtual computational techniques such as finite-element analysis (FEA) are

ideally suited to investigating the impact of patent sutures on skull stresses and

strains. The established way to measure strains experimentally is with strain

gauges fixed to the surface of bones [29–35]. Local strain at these specific

locations is returned, but inferring either strain over the whole skull or the

function of patent sutures is problematic. FEA allows stresses and strains to

be predicted for the entire structure [36–44], and anatomical features to be

controlled so that the influence of patent or fused sutures can be explored

[45–51]. Moazen et al. [24] carried out such an analysis on a lizard skull,

where specific sutures were modelled as patent within the computer model
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Figure 1. The skull model of the reptile Sphenodon. Grey regions of the skull represent bone material and white regions represent suture material.
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and their impact on local and global strains assessed. This

study revealed that patent sutures modified strains over the

skull compared with fused sutures, and that whereas strains

decreased in some areas of the skull, they increased in others.

However, Wang et al. [52] concluded that patent sutures have

little effect on skull strains in primates, and that they are per-

haps less important mechanically than in animals with more

patent sutures or a greater suture to bone volume, such as

lizards and alligators [24,53]. Such studies combined with

experimental data provide important information on suture

form and function [3,23,29,30,32,54], but for a full overview

of the impact of patent and fused sutures on load transfer

within the skull more comprehensive analyses are necessary.

The skull experiences loads of varying location, direction and

magnitude during normal everyday activities such as feed-

ing, and the same is true for sutures. To appreciate fully the

function or impact of sutures on skull stresses and strains, a

range of loading regimens should be investigated. However,

this was not done in previous studies.

Past work has suggested that: patent sutures do not affect

strain distributions [52]; patent sutures act as strain sinks and

reduce strains [22,23]; sutures both reduce and elevate strains

[24] and that patent sutures help modulate strains throughout

the skull [30,55,56]. Here, we investigate the impact of exper-

imental, in silico, fusion of sutures on strain magnitudes

and distributions within the skull of the reptile Sphenodon
by testing the following hypotheses.
Hypothesis 1: sutures have no impact on strain distribution and
magnitude in the skull.
Hypothesis 2: patent sutures reduce the mean strain across the
skull.
Hypothesis 3: patent sutures lead to more uniform strain distri-
butions in the skull.
To do this, we combine two computational techniques,

multibody dynamics analysis (MDA) and FEA in the reptile

Sphenodon, first to predict 15 separate biting loading regimens,

and then to analyse the structural performance of the skull

under these. The performance of the skull under many
different loading regimens is important because the skull will

deform differently dependent upon the loading position and

magnitude. This is a consideration most other studies do not

take into account.

There are over 100 sutural joints in the skull of Sphenodon
[3], and all patent sutures were carefully incorporated into the

model (figure 1). This level of suture modelling has not been

carried out before. The deformation of each individual suture

will impact on all other sutures, thus excluding one or more

sutures from the model may affect the deformations of both

the bones and the other sutures. Understanding the role of

sutures with respect to load transfer in the skull of Sphenodon,

where sutural anatomy is complex, can provide important

information on general skull mechanics. In addition, identify-

ing the overall contribution of patent sutures to load transfer

through the skull may improve our understanding of medical

conditions such as craniosynostosis, where skull growth is

abnormal due to early suture fusion.
2. Material and methods
2.1. Multibody dynamics analysis
Detailed descriptions of the MDA model development have been

presented elsewhere [57–61]. Briefly, the cranium and lower jaws

(left and right parts) of a Sphenodon skull (specimen ID: LDUCZ

x036) were scanned in-house by micro-computed tomography

(micro-CT), and three-dimensional geometries were constructed

using AMIRA image segmentation software (AMIRA v. 4.1,

Mercury Computer Systems Inc. USA). Neck vertebral geome-

tries were generated from additional micro-CT scans (specimen

YPM 9194—University of Texas, Austin, USA). These three-

dimensional geometries were imported into ADAMS multibody

analysis software (MSC Software Corp. USA) in preparation for

an MDA. The skull had representative dimensions of length

68 mm, width 56 mm and height 35 mm. The total volume of

the skull (including the bone and the sutures—as represented

in figure 1) was approximately 10 160 mm3. Within ADAMS,

detailed muscle anatomy was incorporated onto the geometries,

http://rsif.royalsocietypublishing.org/
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Figure 2. The MDA model highlighting bite location and type. U, unilateral
bite; B, bilateral bite. Two ripping bites were also simulated at B2.
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and accurate jaw joint and tooth contact surfaces were specified.

Where the neck met the skull a spherical joint was assigned that

permitted the skull to rotate freely about all axes while constrain-

ing translational movements. The major adductor ( jaw closing),

depressor ( jaw opening) and neck musculature were included,

with each muscle group split into several sections and defined

over the anatomical origin and insertions areas on the skull

and lower jaws, respectively [57,60,62] (figure 2). To permit

biting, a food bolus was modelled that could be located at any

position along the jaw, and a specially developed motion tech-

nique, named dynamic geometric optimization [62], was used

to simulate typical feeding movements. Simply, the line of

action of each muscle is used to determine its level of activity

during jaw movements. This motion technique, along with the

muscle forces and biting performance, has been described and

validated elsewhere [58,59,62].

Fifteen biting simulations were performed, including eight

unilateral bites, five bilateral bites and two ripping bites (figure 2,

as in [36]). During all bites, the adductor muscles were fully

activated to ensure peak bite forces were generated. The ripping

bites aimed to pull the head dorsally to the left, and dorsally to

the right while biting down onto a fixed food bolus. This caused

neck muscle forces to reach their maximum magnitudes. In all

simulations, the lower jaws opened from a closed position to

allow the food bolus to locate unobstructed at a specified tooth

location. The lower jaws then closed to contact the food, upon

which forces within all adductor muscle groups were ramped up

until they reached their peak magnitudes. The MDA outputs

muscle force location, direction and magnitude; joint contact

location, direction and magnitude; and bite contact location,

direction and magnitude for each biting simulation.
2.2. Finite-element analysis
The same CT dataset used to construct the MDA model was used

to incorporate sutures into the skull. Sutures were integrated as a

separate material by carefully tracing the gaps between the skull

bone facets on the individual micro-CT slice images, so that all
individual skull bones were completely isolated from one another

(i.e. fully separated by the sutural soft tissue). This approach guar-

anteed that all sutures were represented in their entirety so that for

loads to pass from one bone to another in the model it would have

to pass through the sutural soft tissue material (three-dimensional

model with sutures shown in figure 1).

The model was converted into a tetrahedral mesh consisting

of 395 822 elements, constructed from solid (10 node) higher

order elements. From these elements, 291 920 were assigned as

bone and 103 902 were assigned as sutural soft tissue. Sensiti-

vity studies (N. Curtis 2010, unpublished data) demonstrated

that these were sufficient numbers of elements to accurately pre-

dict the strain through the model. Two set-ups were analysed:

one representing fused sutures where the sutural soft tissue

material was given the same material properties as bone

(Young’s modulus and Poisson’s ratio of 17 and 0.3 GPa, respect-

ively); and another representing patent sutures where the sutural

soft tissue material was given a Young’s modulus of 10 MPa and

a Poisson’s ratio of 0.3 MPa. All material properties were consist-

ent with direct measurements and were within the ranges

applied by other researchers [24,36–38,44,63–66].

A series of 15 FEAs was carried out on both the fused and

patent suture models, with all muscle, joint and bite force

locations, directions and magnitudes imported directly from

the MDA simulations. Although theoretically all forces within

the system should be in equilibrium, owing to the large

number of individual forces, even small variations from the

exact MDA locations of these applied forces would cause

instability within the FEAs (i.e. there would be unconstrained

full body motion of the model). Therefore, to ensure a stable

FE solution, fixed constraints were included in the model. The

locations of these constraints were taken at the joint and bite con-

tacts as defined by the MDA (i.e. neck joint, jaw joints and bite

point). One node at the neck location (occipital condyle) was con-

strained in the medial–lateral and anterior–posterior directions

(x- and z-axes), one node at each jaw joint and bite point was con-

strained in the vertical direction (y-axis). These constraints were

considered minimal, and restricted full body motion but not

deformations of the skull. For example, the neck, bite and joint

contact locations could all deform with respect to each other,

and both jaw joint contact locations could deform relative to

each other. After the FE solutions were complete, von Mises

strains of all bone elements (291 920 elements) in the model

were stored in element tables. A previous study carried out by

Curtis et al. [36] showed von Mises strains to be a good indicator

of bone performance. Investigating the strain in the sutural soft

tissue material is beyond the scope of this study.
3. Results
3.1. Multibody dynamics analysis
The MDA simulations were similar to those carried out in a

previous study, where more detailed results are presented

[36]. From the MDA, muscle force locations, orientations and

magnitudes; joint force locations, orientations and magnitudes;

and bite force locations, orientations and magnitudes were pre-

dicted for 15 separate biting simulations (figure 2). Table 1

summarizes peak bite forces and joint forces predicted from

the MDA. All predicted muscle, joint and bite forces were

exported for use in the FEAs.

3.2. Finite-element analysis
Thirty separate FEAs were carried out on the same skull,

15 with sutures modelled as fused and 15 with sutures mod-

elled as patent. In analyses where sutures were modelled as

http://rsif.royalsocietypublishing.org/


Table 1. Bite forces and jaw joint forces predicted by the MDA. Total
forces are shown for bilateral bites; therefore, the force on each side of the
skull is approximately half that presented. Working refers to the force on
the same side as the bite occurs, while balancing refers to the opposite
side to which biting occurs. See figure 2 for explanation of bite locations.

bite
type

bite
location

bite
force
(N )

working
joint
force (N )

balancing
joint
force (N )

bilateral B1 121 540 —

B2 150 524 —

B3 165 510 —

B4 185 490 —

B5 214 462 —

unilateral U2 150 249 276

U3 166 232 276

U4 187 212 277

U5 216 183 278

0

20

40

60
sk

ul
l v

ol
um

e 
(%

)

80

100

von Mises microstrain

fused sutures single loadcases

patent sutures single loadcases
fused sutures average of all loadcases

patent sutures average of all loadcases

500 1000 1500 2000 2500 3000 3500 4000

Figure 3. Cumulative strain plots showing the % volume of the skull (bone only not sutural soft tissue) at specific von Mises strain levels. Plots of all 15 individual
loadcases along with the average of all loadcases are presented for both the fused and patent suture states.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130442

4

 on September 29, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
fused, individual bites generated areas of both high and low

strain throughout the skull, with higher strains concentrated

around muscle attachments and bite points. In such cases,

53 per cent of the skull volume was at strain levels of less

than 500 microstrain (figure 3). When sutures were modelled

as patent, it was immediately obvious that strains in some of

the low-level strain regions were elevated (figure 4), with only

37 per cent of the skull volume at strains of under 500 micro-

strain (figure 3). This was noted across all 15 separate bites,

with overall mean element strain (i.e. the average strain value

of each element) throughout the skull increasing from approxi-

mately 655 microstrain (fused sutures) to approximately 1226

microstrain (patent sutures). The percentage volume of bone

within the skull at specific strain magnitudes was similar for

all individual loading cases with each suture state (i.e. fused

or patent), but the percentage of bone at lower strain levels

was reduced considerably when sutures were patent (figure 3).
4. Discussion
The adult skull of the New Zealand reptile Sphenodon con-

tains many patent sutures [3], making it an ideal subject for

an investigation of the impact of these sutures on overall

skull performance. We used a combination of MDA and

FEA to load the skull and assess the impact of patent sutures

on skull strains in Sphenodon. As with all computer modelling

investigations, there are some approximations that could

impact on the model performance. In our experience, their

impact is probably small in relation to the effects we observe,

but it is important to be explicit about potential modelling

limitations. All sutures were carefully and accurately positio-

ned throughout the skull, but to allow appropriate meshing

within the FE model the sutures needed to be enlarged

and simplified. The non-enlarged sutures were approxi-

mately 0.35 mm wide, whereas the enlarged suture width

was approximately 0.5 mm, but this did vary slightly through-

out the skull. Enlarging the sutures may have reduced

the constraining properties of the sutures and their relative

deformations may be greater than found in nature. Another

approximation concerns the material properties of the bone

and sutural soft tissue material. Both were represented as isotro-

pic and homogeneous structures, which in reality is not the case.

Although these approximations will have some effect on strains

generated, they would not be expected to alter either the general

strain patterns or the differences in magnitude between the

fused and patent models. As such, the findings and conclusions

of this investigation would not be affected.

Our findings falsify hypotheses 1 and 2 (outlined in §1) in

that the presence of patent sutures clearly impacts on stress

and strain distributions by raising strains in certain skull

regions. Thus, our experiment indicates that patent sutures

lead to a more consistent higher strain magnitude over the

skull, substantially limiting low-strain regions when com-

pared with a fused suture model. While increasing bone

strains may seem counterproductive, it could be an important

consequence of patent sutures. Bone strain is thought to be

the stimulus for bone modelling/remodelling, and if strains

are too low or too high, bone will be removed or deposited

accordingly [67–71]. It is therefore important for bone strains

http://rsif.royalsocietypublishing.org/
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to be within an equilibrium window of strain. When sutures

were modelled as fused within our FE simulations large

regions of the skull experienced very low-strain magnitudes

during biting. Identifying exact bone remodelling strain mag-

nitudes is problematic and thus we cannot say categorically

that our predicted strains with patent sutures would reduce

the incidence of bone resorption; however, we are confident

that our predicted peak strains are consistent with those

recorded in vivo and in vitro. Peak (principal) strain magni-

tudes of between 900 and 5200 microstrain have been

reported in bone during forceful loading [72–75], including

2000–3000 microstrain in a pig skull [30,76]. We noted peak

tensile and compressive strains of approximately 2000–3000

microstrain in our study (figure 5).

Consistent with hypothesis 3, introducing anatomically

accurate patent sutures into our model raised the strains in
the very low-strain regions of the skull, generating a more

widely distributed, high level of strain (figure 4). Thus,

patent sutures offer two potential benefits. The first is a

reduction of gross strain gradients (i.e. large regions of the

skull at low strains and other regions at high strains),

which could indicate a reduction of bending or twisting in

the skull. Bone is more likely to fail under tensile strains,

and these occur most often when bone is under bending or

torsion [77]. However, it should be noted that strain gradients

could be related to deformation regimens other than bending

or twisting. The second potential benefit is that during each

individual bite, irrespective of location or type, the general

distribution of strain is similar. This reduces the chance of

an area of the skull being under loaded. In figure 4, localized

red hotspots are evident on the patent suture model, which indi-

cate areas of high strain. The majority of these hotspots appear at

http://rsif.royalsocietypublishing.org/
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locations where the bone in the model is very thin adjacent

to the sutures. These hotspots are likely to be a result of the

modelling limitations discussed earlier, whereby some sutures

were expanded slightly so that they could be modelled with a

sufficient number of reasonably shaped elements.

During growth and development, bone adapts more

readily than at any other time in the animal’s life. Low strains

at this stage could result in under-developed/under-ossified

bony structures, and the careful modulation of skull strains

ensures the careful modulation of skull growth. Generating

higher levels of strain throughout the adult skull is also

important, and may be why some sutures remain patent

even when the skull has stopped growing. There are several

reasons why an animal may not bite at all points along the

jaw at equal frequency: animals often have preferential

sides of the jaw on which they bite more frequently [78,79],

and different foods may require differential use of the jaw for

their capture and breakdown. Additionally, the generally

high levels of strain throughout the skull could render it more

resilient in the face of pathologies that affect biting; ensuring

bone is not lost or weakened due to short-term functional

impairment. We have shown in Sphenodon that without patent

sutures in the cranium the skull bones would only experience

low-level strains, which could reduce their resistance to fracture.

These findings agree with previous studies on reptiles that

suggest patent sutures modify strains substantially throughout

the skull during biting [24]. However, the results are at var-

iance with experimental and modelling studies on mammals

that suggest some regions of the mammalian skull experience

only very low strains during mastication [31,80]. Similarly,
computer models of mammal skulls with some patent sutures

do not differ significantly from skulls with no (or completely

fused) sutures [52]. However, further discussion must await

the analysis of a comparable mammalian skull with a full

complement of patent sutures.

We hypothesize that most of the bone in the space-frame-

type structure of the Sphenodon cranium is loaded principally

through feeding activities and neck musculature, where the

forces are intermittent but relatively high. Although equival-

ent biting and neck loads will also be experienced by a large

part of the stiffened-shell-type cranium of mammals, other

areas may experience lower magnitude but higher frequency

loads. It may be these high-frequency–low-magnitude loads

that help maintain bone in the low-strain areas in mammal

skulls [71].

In conclusion, the results of this analysis reveal for the first

time that patent sutures help reduce the number of areas of

low-level strain throughout the reptile skull, leading to a

more predictable and widely distributed high level of strain

during every bite. This has important implications with respect

to bone growth and remodelling in both juvenile and adult

skulls, ensuring that bone grows (and is maintained) normally

and optimally.
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J. R. Soc. Interface 10, 2013044 (2013; Published online 26 June 2013 (doi:10.1098/

rsif.2013.0442))

Figure 4 was presented incorrectly, with (a) and (b) displaying the same bite

position. The corrected figure below shows different bite positions for (a) and

(b) as was initially intended.

von Mises microstrain
1940 2330 2720 3110 3500156011707803900
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(ii)(b)
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Figure 4. Sample von Mises strain distribution plots with (i) fused and (ii) patent suture states resulting from (a) an anterior bilateral bite and (b) a posterior
unilateral bite. Black circle represents bite location. Suture material is not visible in these images.
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