14 research outputs found
P089: Comparaison entre la dépense énergétique mesurée par calorimétrie indirecte et celle calculée selon les formules usuelles chez les patients agressés de poids extrême
Perte de poids avant la radiothérapie des cancers ORL : critère suffisant pour la mise en place d’une alimentation entérale ?
Mesure de la dépense énergétique de repos par calorimétrie indirecte après séjour prolongé en soins intensifs
Effect of a high fructose diet on metabolic parameters in carriers for hereditary fructose intolerance.
Hyperuricemia is an independent risk factor for the metabolic syndrome and cardiovascular disease. We hypothesized that asymptomatic carriers for hereditary fructose intolerance (OMIM 22960) would have increased uric acid and altered component of the metabolic syndrome when exposed to fructose overfeeding.
Six heterozygotes for HFI (hHFI) and 6 controls (Ctrl) were studied in a randomized, controlled, crossover trial. Participants ingested two identical test meals containing 0.7 g kg <sup>-1</sup> glucose and 0.7 g kg <sup>-1</sup> fructose according to a cross-over design, once after a 7-day on a low fructose diet (LoFruD, <10 g/d) and on another occasion after 7 days on a high fructose diet (HiFruD, 1.4 g kg <sup>-1</sup> day <sup>-1</sup> fructose + 0.1 g kg <sup>-1</sup> day <sup>-1</sup> glucose). Uric acid, glucose, and insulin concentrations were monitored in fasting conditions and over 2 h postprandial, and insulin resistance indexes were calculated.
HiFruD increased fasting uric acid (p < 0.05) and reduced fasting insulin sensitivity estimated by the homeostasis model assessment (HOMA) for insulin resistance (p < 0.05), in both groups. Postprandial glucose concentrations were not different between hHFI and Ctrl. However HiFruD increased postprandial plasma uric acid, insulin and hepatic insulin resistance index (HIRI) in hHFI only (all p < 0.05).
Seven days of HiFruD increased fasting uric acid and slightly reduced fasting HOMA index in both groups. In contrast, HiFruD increased postprandial uric acid, insulin concentration and HIRI in hHFI only, suggesting that heterozygosity for pathogenic Aldolase B variants may confer an increased susceptibility to the effects of dietary fructose on uric acid and hepatic insulin sensitivity. This trial was registered at the U.S. Clinical Trials Registry as NCT03545581
Étude nutritionnelle de 72 patients avec un état de conscience altéré dans le cadre d’une évaluation par le Coma Science Group du CHU de Liège
La spasticité est-elle un facteur prédictif de l’état nutritionnel des patients en état de conscience altérée ?
Exploring the role of purinergic receptor P2RY1 in type 2 diabetes risk and pathophysiology: Insights from human functional genomics.
Human functional genomics has proven powerful in discovering drug targets for common metabolic disorders. Through this approach, we investigated the involvement of the purinergic receptor P2RY1 in type 2 diabetes (T2D).
P2RY1 was sequenced in 9,266 participants including 4,177 patients with T2D. In vitro analyses were then performed to assess the functional effect of each variant. Expression quantitative trait loci (eQTL) analysis was performed in pancreatic islets from 103 pancreatectomized individuals. The effect of P2RY1 on glucose-stimulated insulin secretion was finally assessed in human pancreatic beta cells (EndoCβH5), and RNA sequencing was performed on these cells.
Sequencing P2YR1 in 9,266 participants revealed 22 rare variants, seven of which were loss-of-function according to our in vitro analyses. Carriers, except one, exhibited impaired glucose control. Our eQTL analysis of human islets identified P2RY1 variants, in a beta-cell enhancer, linked to increased P2RY1 expression and reduced T2D risk, contrasting with variants located in a silent region associated with decreased P2RY1 expression and increased T2D risk. Additionally, a P2RY1-specific agonist increased insulin secretion upon glucose stimulation, while the antagonist led to decreased insulin secretion. RNA-seq highlighted TXNIP as one of the main transcriptomic markers of insulin secretion triggered by P2RY1 agonist.
Our findings suggest that P2RY1 inherited or acquired dysfunction increases T2D risk and that P2RY1 activation stimulates insulin secretion. Selective P2RY1 agonists, impermeable to the blood-brain barrier, could serve as potential insulin secretagogues
Mapping the human genetic architecture of COVID-19
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
RAINBIO : a mega-database of tropical African vascular plants distributions
The tropical vegetation of Africa is characterized by high levels of species diversity but is undergoing important shifts in response to ongoing climate change and increasing anthropogenic pressures. Although our knowledge of plant species distribution patterns in the African tropics has been improving over the years, it remains limited. Here we present RAINBIO, a unique comprehensive mega-database of georeferenced records for vascular plants in continental tropical Africa. The geographic focus of the database is the region south of the Sahel and north of Southern Africa, and the majority of data originate from tropical forest regions. RAINBIO is a compilation of 13 datasets either publicly available or personal ones. Numerous in depth data quality checks, automatic and manual via several African flora experts, were undertaken for georeferencing, standardization of taxonomic names and identification and merging of duplicated records. The resulting RAINBIO data allows exploration and extraction of distribution data for 25,356 native tropical African vascular plant species, which represents ca. 89% of all known plant species in the area of interest. Habit information is also provided for 91% of these species
Exploring the floristic diversity of tropical Africa
Background: Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity. Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Nowhere is this more acute than in species-rich tropical Africa, where so little is known about plant diversity and its distribution. In this paper, we use RAINBIO - one of the largest mega-databases of tropical African vascular plant species distributions ever compiled - to address questions about plant and growth form diversity across tropical Africa. Results: The filtered RAINBIO dataset contains 609,776 georeferenced records representing 22,577 species. Growth form data are recorded for 97% of all species. Records are well distributed, but heterogeneous across the continent. Overall, tropical Africa remains poorly sampled. When using sampling units (SU) of 0.5°, just 21 reach appropriate collection density and sampling completeness, and the average number of records per species per SU is only 1.84. Species richness (observed and estimated) and endemism figures per country are provided. Benin, Cameroon, Gabon, Ivory Coast and Liberia appear as the botanically best-explored countries, but none are optimally explored. Forests in the region contain 15,387 vascular plant species, of which 3013 are trees, representing 5-7% of the estimated world's tropical tree flora. The central African forests have the highest endemism rate across Africa, with approximately 30% of species being endemic. Conclusions: The botanical exploration of tropical Africa is far from complete, underlining the need for intensified inventories and digitization. We propose priority target areas for future sampling efforts, mainly focused on Tanzania, Atlantic Central Africa and West Africa. The observed number of tree species for African forests is smaller than those estimated from global tree data, suggesting that a significant number of species are yet to be discovered. Our data provide a solid basis for a more sustainable management and improved conservation of tropical Africa's unique flora, and is important for achieving Objective 1 of the Global Strategy for Plant Conservation 2011-2020. In turn, RAINBIO provides a solid basis for a more sustainable management and improved conservation of tropical Africa's unique flora.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
