203 research outputs found

    Design of a mill for a cyanide plant

    Get PDF
    Object. Designing a mill, which according to my ideas, would be the best in practice. The machinery used in practice at the present time, is mostly old style. In this work of mine I have substituted a great deal of lately invented machinery which would give much better and quicker results than the machinery now used. Many ideas have come to me while working on this subject which I think would assist me in any further work on the subject --page 1

    Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    Get PDF
    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of “false positive” results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013

    Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    Get PDF
    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of “false positive” results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013

    Climatic controls on biophysical interactions in the Black Sea under present day conditions and a potential future (A1B) climate scenario

    Get PDF
    A dynamical downscaling approach has been applied to investigate climatic controls on biophysical interactions and lower trophic level dynamics in the Black Sea. Simulations were performed under present day conditions (1980–1999) and a potential future (2080–2099) climate scenario, based on the Intergovernmental Panel for Climate Change A1B greenhouse gas emission scenario. Simulations project a 3.7 °C increase in SST, a 25% increase in the stability of the seasonal thermocline and a 37 day increase in the duration of seasonal stratification. Increased winter temperatures inhibited the formation of Cold Intermediate Layer (CIL) waters resulting in near complete erosion of the CIL, with implications for the ventilation of intermediate water masses and the subduction of riverine nutrients. A 4% increase in nitrate availability within the upper 30 m of the water column reflected an increase in the retention time of river water within the surface mixed-layer. Changes in thermohaline structure, combined with a 27% reduction in positive wind stress curl, forced a distinct change in the structure of the basin-scale circulation. The predominantly cyclonic circulation characteristic of contemporary conditions was reversed within the southern and eastern regions of the basin, where under A1B climatic conditions, anticyclonic circulation prevailed. The change in circulation structure significantly altered the horizontal advection and dispersion of high nutrient river waters originating on the NW self. Net primary production increased by 5% on average, with much spatial variability in the response, linked to advective processes. Phytoplankton biomass also increased by 5% and the higher nutrient environment of the future scenario caused a shift in species composition in favour of larger phytoplankton. No significant change in zooplankton biomass was projected. These results constitute one of many possible future scenarios for the Black Sea, being dependent on the modelling systems employed in addition to the choice of emission scenario. Our results emphasise in particular the sensitivity of dynamical downscaling studies to the regional wind forcing fields extracted from global models (these being typically model dependent). As atmospheric warming is projected with a high degree of confidence warming of the Black Sea upper layer, increased water column stability, and erosion of the CIL are believed to be robust results of this study

    A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella enterica serotype Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Typhimurium is the main serotype of <it>Salmonella enterica </it>subsp. <it>enterica </it>implicated in food-borne diseases worldwide. This study aimed to detect the prevalence of ten markers combined in a macro-array based on multiplex real-time PCR. We targeted characteristic determinants located on pathogenicity islands (SPI-2 to -5, virulence plasmid <it>pSLT </it>and <it>Salmonella </it>genomic island 1 (SGI1)) as well as a specific 16S-23S rRNA intergenic spacer sequence of definitive type 104 (DT104). To investigate antimicrobial resistance, the study also targeted the presence of genes involved in sulfonamide (<it>sul1</it>) and beta-lactam (<it>bla</it><sub>TEM</sub>) resistance. Finally, the <it>intI1 </it>determinant encoding integrase from class 1 integron was also investigated.</p> <p>Results</p> <p>A total of 538 unrelated <it>S</it>. Typhimurium strains isolated between 1999 and 2009 from various sources, including food animals, food products, human and environmental samples were studied. Based on the combined presence or absence of these markers, we distinguished 34 different genotypes, including three major genotypes encountered in 75% of the studied strains, Although SPI determinants were almost always detected, SGI1, <it>intI1</it>, <it>sul1 </it>and <it>bla</it><sub>TEM </sub>determinants were found 47%, 52%, 54% and 12% of the time respectively, varying according to isolation source. Low-marker patterns were most often detected in poultry sources whereas full-marker patterns were observed in pig, cattle and human sources.</p> <p>Conclusion</p> <p>The GeneDisc<sup>® </sup>assay developed in this study madeit easier to explore variability within serotype Typhimurium by analyzing ten relevant gene determinants in a large collection of strains. This real-time multiplex method constitutes a valuable tool for strains characterization on epidemiological purposes.</p

    Eddy induced cross-shelf exchanges in the Black Sea

    Get PDF
    Cross-shelf exchanges in the Black Sea were investigated using remote sensing data and an ocean circulation model to which an eddy-tracking algorithm and Lagrangian particle tracking model was applied. An anticyclonic eddy in 1998 and a cyclonic eddy in 2000 were investigated in detail. Eddy-induced cross-shelf transport of low salinity and high Chl-a waters reached a maximum in the presence of filaments associated with these eddies. The daily mean volume transport by the eddies was comparable with the previously documented transport by eddies of similar size in the north-western shelf region. Lagrangian particle tracking results showed that 59% of particles initially released over the shelf were transported offshore within 30 days by the 1998 anticyclone and 27% by the 2000 cyclone. The net volume transport across the Black Sea shelf-break reached the maxima in winter, coinciding with the increase in wind stress curl and mean kinetic energy that is a measure of the intensity of the boundary current. Ekman transport directly influences the cross-shelf exchanges in the surface layer. The south-eastern Black Sea is presented as an important area for cross-shelf transport. The total cross-shelf transport can be divided into its “large-scale” and “eddy-induced” components. Eddy-induced transport was 34% and 37% of the total cross-shelf transport (1998–2014) in the Black Sea in the off-shelf and on-shelf directions, respectively, but these values ranged between 25% and 65% depending on the eddy activity over time

    Sudden cardiac death while waiting: do we need the wearable cardioverter-defibrillator?

    Full text link
    Sudden cardiac death (SCD) is the most frequent cause of cardiovascular death in industrialized nations. Patients with cardiomyopathy are at increased risk for SCD and may benefit from an implantable cardioverter-defibrillator (ICD). The risk of SCD is highest in the first months after myocardial infarction or first diagnosis of severe non-ischemic cardiomyopathy. On the other hand, left ventricular function may improve in a subset of patients to such an extent that an ICD might no longer be needed. To offer protection from a transient risk of SCD, the wearable cardioverter-defibrillator (WCD) is available. Results of the first randomized clinical trial investigating the role of the WCD after myocardial infarction were recently published. This review is intended to provide insight into data from the VEST trial, and to put these into perspective with studies and clinical experience. As a non-invasive, temporary therapy, the WCD may offer advantages over early ICD implantation. However, recent data demonstrate that patient compliance and education play a crucial role in this new concept of preventing SCD

    Genetic Diversity and Pathogenic Potential of Attaching and Effacing Escherichia coli O26:H11 Strains Recovered from Bovine Feces in the United States

    Get PDF
    Escherichia coli O26 has been identified as the most common non-O157 Shiga toxin-producing E. coli (STEC) serogroup to cause human illnesses in the United States and has been implicated in outbreaks around the world. E. coli has high genomic plasticity, which facilitates the loss or acquisition of virulence genes. Attaching and effacing E. coli (AEEC) O26 strains have frequently been isolated from bovine feces, and there is a need to better characterize the relatedness of these strains to defined molecular pathotypes and to describe the extent of their genetic diversity. High-throughput real-time PCR was used to screen 178 E. coli O26 isolates from a single U.S. cattle feedlot, collected from May to July 2011, for the presence or absence of 25 O26 serogroup-specific and virulence-associated markers. The selected markers were capable of distinguishing these strains into molecularly defined groups (yielding 18 unique marker combinations). Analysis of the clustered regularly interspaced short palindromic repeat 1 (CRISPR1) and CRISPR2a loci further discriminated isolates into 24 CRISPR types. The combination of molecular markers and CRISPR typing provided 20.8% diversity. The recent CRISPR PCR target SP_O26-E, which was previously identified only in stx 2-positive O26:H11 human clinical strains, was identified in 96.4% (161/167 [95% confidence interval, 99.2 to 93.6%]) of the stx-negative AEEC O26:H11 bovine fecal strains. This supports that these stx-negative strains may have previously contained a prophage carrying stx or could acquire this prophage, thus possibly giving them the potential to become pathogenic to humans. These results show that investigation of specific genetic markers may further elucidate our understanding of the genetic diversity of AEEC O26 strains in bovine feces

    Molecular and Phenotypic Characterization of Escherichia coli O26:H8 among Diarrheagenic E. coli O26 Strains Isolated in Brazil

    Get PDF
    Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliC(H11), and 11 were fliC(H8) positive. the identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. the presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. the interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. the O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Inst Butantan, Bacteriol Lab, São Paulo, BrazilFrench Food Safety Agcy, Maisons Alfort, FranceUniv Estadual Londrina, Dept Patol Geral, Ctr Ciencias Biomed, Londrina, Parana, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilCtr Univ Sao Camilo, São Paulo, BrazilBfR Fed Inst Risk Assessment, Natl Reference Lab Escherichia Coli, Berlin, GermanyUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc
    corecore