Design of a mill for a cyanide plant

Charles A. Fach

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Physical Sciences and Mathematics Commons
Department:

Recommended Citation

Fach, Charles A., "Design of a mill for a cyanide plant" (1900). Bachelors Theses. 254.
https://scholarsmine.mst.edu/bachelors_theses/254

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

FOR

Degree of Bachelor of Sience

IN

SUBJECT: "Design of a Mill for a Cyanide Plant."

CHARLES ALBERT FACH.
JUNE, 1900.

THE DESIGN OF A MILI, FOR A CYANIDM PLANT,
in which the ore,direct from the mine, is to be crushed or ground to the requiced fineness.

OBJECT.
Designing a mill, which according to my ideas, would be the best in practica.

The machinery used in practice at the present time, is mostIy old style. In this work of mine I have substituted a great deal of lately invented machinery which would give much better and quicker results than the michinery now used. Many ideas have come to me while working on this subject which I think would assist me in any further work on the subject.
Ore.

The rill is designed especially for the ore which Messrs. Fraizer and Jamison(class of 1900) took to do their thesis work on. Contents of the ore.

Ist Quantitatively.

Sodium	1.68 per	cont.
Silica	58.15	"
Potassiun	9.89	"
Trorr	3.274	"
Alumina	$22.9453 "$	n
Sulphur	4.20110	"
Manganese	. 3396 "	n
Gold and Silver	.0164"	"
Calcium	Trace	
Strontium	n	
Magnesium	"	

(2)

2nd Mineralogically.
It is a phonolite.
Hardness of the Ore.
Hardness was found to be.

> Capacity.

Gapacity is two hundred tons ore per day.
Principle of the Mill.

The ore as it comes from the mine is allowed to fall over an inclined grizzley (distance between bars, two inches) two-thirds of which gozs through and one-third does rot. The latter,after rolling to the battom of the crizzley,falls into a Gates Crusher, Whose jaws are set at one inch. The former eons, with that portion from the Gates Crusher to Dryers (the ore being assumed to be damp When taker from the inine).

After the ore is dryed, it goes into some separator, thus it is classified lareer ard smaller than two-thirds(2/3) inches. That larger than two-thirds inches goes to a Dodge Crusher(whose jaws are set at one inch).

That smaller than twomthirds inches from the first set of separators is rejoined and with that which comes from the nodge Crusher, passes over a second set of separators and thus it deagain sized as larger and smaller than onemtwelvth.

That larger than one-twelvth inch goes to a set rof rifg winch cmashes it to one-fourth of an inch. That smalier than ont twelvth inch EOes to a fourth set of separators.

The ore cominc from the rolls, goes to a third set of separators which sizes it, as larger and smaller than onemtwelvth (1/12) inch. That smaller than onemtelvth goes to a fourth set of
separators. That larger than one-twelvth, goes to the second set of rolls and from here to the fourth set of separators.

The fourth set of separators elassify the ore as that larger and smaller than one-thirty-sixth ($1 / 36$) inches. That smaller than one-thirtymsixth inches $\underset{H}{ } 0$ es to the roaster. That larger than onewthirty-sixth inches goes to the third set of rolls.

The thi rd set of rolls cmash the ore to one-thirtywsixth (1/36) inches. The ore as it comes from these rolls zoes to the roaster.

The ore artar it somes from roaster is ready for leachine by means of cyanide.

Machingry Used.
1 Fo. 4 Grizzley
1 No. 4 Gates erusher
1 No. 2 Dodge Crusher
2 Largest size Howell White Dryers.
4 Largest size Howell White Roasters.
8 No. 2 Screens or Separatops
3 Sets High Speed Crushing Rolls.
Grizzley.
This erizaley not ouly first separates the ore; that :comeies from the mife, thus savinc the fine from passing thrount the crusher, but it also serves to recover éads,drills, and dihamers that may have come from the mine in the ore before tive reach the rock breaker and thus preventing serious accidents to the crusher. Phe grizzley is placed at the highest point in thefmill where the ore cars can be dumped on it and the coarse material screened from the fire.

The grizzley is placed at an angle of forty-five degrees. The size of the grizzley is 4×10 fest and size of bars $3 / 4 \times 3$ inches. The weight is 1.380 pourts

Gates Crushers.

The orusher is of style "D" and is a breake of the gyratory form. The crushing is done betwern a cone placed on a gyratory siaft vartical through the center of a cylinderical shell. As it eyrates, the crushing oare impinges against the sides of the shell in relation to which it isconstantly approachine and reco日line. The top of the siart carrying the crushing cone is held riding while the botto is gyrayed by means of a simple gearimg. Ore opening is 8×27 inches. Weight is 21000 pounds.

Dodge Crusher.
fhis cousher is used to smasa the ore to a more uniform
size for the rolls. The crushing is done by means of a moveable Jaw,hinged at the bottom and giving a large amount of movement at the top, thus reducing the material by gradually breakine the places until they drop throuth the opaninc betweer the jaws at the bottom, where the morementilis less. Weightitis 10000 pounds. Size of даш byenixg is 7×9 inches.

Howell White Dryere.
These dryers are used to expell the natsturcio from the one to be treated. This is done in order that tinere will be no wet ore to clog the screens and rolls and thus reduce their capacity.

These dryers are too familiar and their method will not be discussed

Howell White Roasters.

Used to expell the CO_{2} (if any) and the sulphur. This roaster occupies but ifttle space and also secured the workmen's safety from the injurious gases $\left(\mathrm{sO}_{2}\right.$, etc.) arising from the hot ore.

Screens.

These produce a unform product. When the screens are in operationstie material is fed in at the hoppet, from which it is taken by a spiral conveyor which distributed it in a continuous thin stream over the entire surface of the evreen. The sereen frame librates rapidly as the material flows down its surface, the Piner passing through, the coarser tailine over.

Rolls.
Hitil speed cmashine rodis are used. These rolls have narrow faces and they wear truly across the faces.

Buildint.

The urace work, of the sides, is wooden posts covered with corrugated iron. The roof ary all josts within building is made of medium stesl. The roof soverine is cormeatiod iron. The buildine is sixty fert wide.

Besign of Roof.

The roof is divided into three sections. The uppermost section(50 feet in length), and lowest section(60 feet in length) are inclined at an angle of thirty degrees and the middie section (forty feet in length) at an angle of fortymive degreas.

Truss for Roof.

Trass \# 1 is for highest section of roof ad is fifty feat in length.

Truss \# 2 is for middle section of roof and is forty feet in length.

Truss \#3 is for lowest section of roof and is sixty feet in length.

There are two of exch trusses used which are placed so spacing them will be twenty feet.

$$
\begin{gathered}
\text { Design of Roof Trusses. } \\
\text { Weight on Each Truss } \\
\text { Using formula, } \boldsymbol{W}^{\prime}=\frac{T}{\sigma r} \\
\text { y } \frac{\left.\theta^{2} r^{2}\right)}{-1}
\end{gathered}
$$

Where $F^{\prime}=$ the dead weight of the truss.
W = total external load due to wind, snow, roof covering.
$6=$ the allowable stress per square inch.
$\mathbf{r}=$ the rise in feet of the truss.
1 = length of span in fest.
$\mathrm{Y}=$

Truss I

$$
\begin{aligned}
& \text { r }=50 \text { feet } \\
& \mathbf{W}=(50 \times 20 \times 30 \#)=30,000 \# \\
& \sigma=10,000 \# \\
& Y=\frac{10}{3} \\
& r=7.2 \text { feet. }
\end{aligned}
$$

$$
W^{\prime}=\frac{\frac{30000}{\frac{10000}{3}}\left(\frac{(50)^{2}}{2}+(7.2)^{2}\right)}{(1930 \# \text { make }=2000 \# \#}
$$

(7)

Weight on each apeat $=\frac{2000}{10}=200 \#$
30 pounds per square foot for snow load and three pounds per square foot for irons covaring.

Total weight on each aped $20 \times 5 \times(30+3)+200=3500 \#$

Truss II

$$
\begin{aligned}
& W=40 \times 20 \times 30 \%=24000 \% \\
& I=40 \text { feet } \\
& r=5.7 \text { feet } \\
& Y=10 / 3 \\
& \sigma=10000 \text { pounds. }
\end{aligned}
$$

$$
w^{\prime}=\frac{\left.\frac{24000}{10000 x}-\frac{10}{3}\left(\frac{40)^{7}}{2}\right)^{(5.7)^{2}}\right)}{-1230 \# \text { make }=1240 \#}
$$

Now weitht at each apex $=\frac{1240}{8}=155 \#$
 TMuss III

$$
\begin{aligned}
& I=\{60 \times 20 \times 30 \%=36000 \% \\
& I=60 \text { feet } \\
& r=3.6 \text { feet } \\
& y=10 / 3 \\
& 6=10000
\end{aligned}
$$

$$
W^{\prime}=\frac{\frac{36000}{10000 \times 3.6}}{\frac{10}{3}\left(\frac{\left(\frac{60}{2}\right)^{2}}{}(8.6)^{2}\right)}=2834 \text {, make }=3000 \#
$$

Weight at each apex $=\frac{3000}{12}=250$ \#
Total weight at each apex $=(20 \times 5 \times 33 \#)+250 \#=3550 \#$

(8)

Woried out the load on each partel, then laid this load vertically to scale, ther worked up a "Dead Load" diagram for each truss. These diagrams will be found on the sheet which aceompany this thesis. After the "Dead Load" diagram was drawn carefully, the stresses were measured carefully and the stresses laid out in pounds. Brom these figures, the design of each piece was figured as will be shown later. The different members are lettiered or the drawins.

Compression Members (I Beam)
Took fomula as follows: for all dead load strains:

$$
P=\left(20,000-90 \frac{1}{r}\right)
$$

when $P=$ the allowed strain in compatision per square inch of crose section, in pounds.
$I=$ the lergth of compression member, in inches.
$r=$ the least radius of cyration of the section,in inches.
P a d 1 being known, substituted values for r (found in carriage) And multiplied right hand member by the area of the section, in square inchespcorresponds to the r found, until the right hand member of the equation was equal to or greater than the left hand member of the same equation.

Design of Compression Member in fruss 1.
As the stresses in members Aa, $\mathrm{Bb}, \mathrm{Ce}, \mathrm{Df}, \mathrm{Hh}, \mathrm{Pr}, \mathrm{Gm}, \mathrm{Ho}, \mathrm{Iq}$, and Jr even so nearly alike, took the greatest stress of any ore member: Which in this truss was $\operatorname{Jr}\left(55600^{2}\right)$ and then makitg all the above ramed members of the same style and weicht.

This was done to have a uniform and even surface for the roof (having height same), in order that no snow or sleet would accumulate in any crevice formed by such, causing any one member to have more weitht than any one of the remainder members.

Substituted this value (55600) for P in equation $1=5$ feet $=69$ inches.
$55600 \#=(20,000=90$ 20.05 $)=17366$ pounds.
Area of section in square inched,in this case is 3. $55600 \#=1736$ 6\# $\times 3=54498 \#$ These values corresyond to shane $309 \mathrm{~A}(\mathrm{stoel})$ in Carmagie. Depth of bean is 5 inches.

Truss II

Worked as Truss I. Members $A, a, B, b, C, d, D, I, F, i, F, k, G, H, H, O$, Largest stress is in $\mathrm{H}, \mathrm{O},(39500 \#)$

$$
39500=\left(20000 \frac{90 \times 60}{1.63}\right)=2.2=36811.4
$$

This r (1.63) corresponds to shape (310a) in Gamegie.
Depth of Beam is four inches. Section area $=2.2$ square inches.

Tmas IIT

Took the largest of any stress occurrine the members $A_{n} \mathrm{a}_{n} \mathrm{~B}_{n} \mathrm{~b}_{n}, \mathrm{C}_{n} \mathrm{a}_{n}, D_{n} \mathrm{I}_{n} \mathrm{~B}_{n} \mathrm{~h}_{n} \quad F_{n} \mathrm{j}_{n} \mathrm{G}_{n} \mathrm{~m}_{n} \mathrm{H}_{n} \mathrm{O}_{n}$

This was found to be $B_{n} b_{01}$ (53800\#)

$$
53800 \#=\left(20,000-\frac{90 \times 60}{2.47}\right)-7.7=83725.8 \#
$$

$r=2.47$ Section area $=4.7$ square inches. Shape $=308$ a.
Then took largest of any of the stresses occurrine fin

This was found to $b \in M_{n} V_{11}(53800 \#)$
This $53800 \#=\left(20,000-\frac{90 \times 60}{2.48}\right) \quad 3.8=67427.47$ $r=3.8$ Section area $=3.8$ square inches. Share $=308 \mathrm{~b}$. The above 308 a and 308 b have the same depth(six inches).

Compressi on Members, continued. Truss \mathbf{I}

సiargest stress was found to be in (gh) and (kl) 7500\#

$$
7500=\left(20,000-\frac{5.7}{1.63}\right) 2.2
$$

$\mathbf{r}=1.63$
$1=3.7 \mathrm{ft}=5.7 \times 1268.4$ inches.
shape $=310$ a . Depth or bacm $=4$ inches weight per foot $=7.5 \#$.
For nembers $I j$, stress $=15000 \#$.

$$
15000\left(20,000-90 \frac{7.2 \times 12}{2,03}\right) 3.8
$$

$\mathbf{r}=2.03$
$I=7.2 f f=7.2 \times 12=86.4$ inches.
Shape $=309 \mathrm{~b}$. depth beam $=5$ inches, weight per foot $=13$ lbs.
Truss II
Wor members $\left(a, b_{j}\right)\left(c, j_{j}\right)\left(e, p_{j}\right)(i, j)(k, m i)\left(n, 0_{0}\right)$
Largest stress is in $\left(i, j_{f}\right)$ an $d\left(0, f_{1}\right)$ 4900\#

$$
4900=\left(20,000-90 \frac{4.3 \times 12}{1.63}\right)^{2.2}
$$

$r=1.63 \quad l=4.3 \mathrm{It}=4.3 \times 12=51.6$ inches.
shape=310 a. Jepth beam=4 inches. Weizht per foot $=7.5$ pounds.
For member ($2, h$,) stress $=9000 \#$

$$
\left.9800=\left(20,000-90 \frac{5.7 \times 12}{1.63}\right)^{2.2}\right)
$$

$r=1,663 \quad 1=5.7$ fest $=5.7 \times 12=68.4$ in thes,
Shape=310 a Deptr beam $=4$ inches.

(II)

出russ III

 $\left(0_{n} \boldsymbol{p}_{n}\right)\left(q_{1}, r_{n}\right)\left(s_{n} t_{n}\right)\left(u_{n}, v_{n}\right)$

Largest stress is found to be in ($i_{n} j_{n}$) and ($\mathbf{m}_{, 1,}$) $=96000$ pounds.

$$
96000=\left(20,000-90 \frac{7.2 \times 12}{1.63}\right)^{2.2}
$$

1=7.2 feet $v=1.63 \quad$ Shape $=310 \mathrm{a}$
For members ($k_{n} \mathbf{2}_{n} 18900$ pounds.

$$
18900=\left(20,000-90 \frac{8.6 \times 12}{4.87}\right) 9.4
$$

$1=8.6$ feet $r=4.87$ Shape $=30^{3}$ a Depth $=12$ inches.
weight per foot $=32$ pounds.
Tension Members.
For the tension members(bottom chords and diagonals) took 20,000 pounds per square inch for medium steel. then $a=\frac{d^{2} \pi}{4}$ solving for $d, \quad d=\frac{\sqrt{29}}{3.14}$

Truss I
Members $(b \quad c)(d o)(x \quad o)(q p)$
Largest stress was in (de)or (on) and equal to 6000 pounds. Area $=\frac{6000}{20000}=.3$ square intohes diameter $=\sqrt{\frac{3 \times 4}{3.1416}}=.3$ inches

largest stress wasin ($j k$) an d equal to 8200 pounds.
Area $\frac{8200}{20000}=.4$ inches . Diameter $\sqrt{\frac{4 \times 4}{3.1416}}=5$ inches
Truss 11

largest stress found to be in (k, h_{p}) and equal to 5700 pounds.
Area of cross section $=\frac{5700}{20000}=.3$ square inches.

(12)

Diameter $=\sqrt{\frac{3 x 4}{3.1416}}=.3$ inches. Truss III

largest stress in $\left(\psi_{n}^{\prime}\right)$ or $\left(f_{n} g_{\|}\right)$and equal to 7200 pounds. Area $=\frac{7200}{20,000}=.4$ square inches. Diameter $=\sqrt{\cdot \frac{4 \times 4}{3.1416}}=.5$ inches.

Members $\left(h_{\prime \prime} i_{1 \prime}\right)\left(j_{n} k_{\prime \prime}\right)\left(I_{\prime \prime} m_{n}\right)\left(n_{n} o_{n}\right)$
largest stress in $\left(j_{11} k_{1 \prime}\right)$ and equal to 10300 pounds. Area of cross section $=\frac{10300}{20,000}=.5$ square inches.
Diameter $=\frac{\sqrt{5 \times 4}}{\sqrt{3.1416}}=.6$ inches.
Notem Took all diameters which were smaller than one inch as one inch.

Tension Members, continued.
甲russ 1.
Members (a I) (c L) (e L) (r L) (p L) (n L)
largest stress in (\mathbf{r} L) and equal to 49600 pounds. Area $-\frac{49600}{2000}=2.5$ swuare inches. 20000
Diameter $=\sqrt{\frac{4 . \times 2.5}{3.1416}}=1.8$ inches.
Mambers (g L) (i L) (LL) (j L)
Lareest stress in (IL) and equal to 33000 pounds.
Area $=\frac{33000}{20,000}=1.7$ square inches.
Diameter $=\sqrt{\frac{4 \times 7}{3.1416 .7}}=1.5$ inches.

(13)

Truss II

For members $\left(a, I_{1}\right)\left(c, I_{p}\right)\left(0, I_{0}\right)\left(m, I_{0}\right)$
largest stress in (aß L_{0}), equal to 32200\#
Area $=\frac{32200}{20000}=1.6$ square inches.
Diameter $=\sqrt{\frac{4 \times 1.6}{3.1416}}=1.5$ inches.
For members $(e, I),(g, I),(j, I),(h, I$,
Largest steess in $(j, I$,$))$
equal to 22900 poŭnds.
Area_$\frac{22900}{20000}=1.1$ square inches
Dianeter $=\sqrt{\frac{4 \times 1}{3.14 \frac{1}{2}}}=1.2$ intches.

Truss III

Largest stress in ($a_{1,} I_{n}$) equal to 64700 pounds.
Area $=\frac{64700}{20000}=3.2$ square inches.
Diameter $=\sqrt{\frac{4 \times 3.2}{3.14}}=2$ inches.

Largest stress in $\left(g_{n} I_{\|}\right)$, equal to 47200 pounds.
Area $=\frac{47200}{20,000}=2.4$ square inches.
Diameter $\sqrt{\frac{4 \times 2}{3.416}}=1.8$ inches.
Design of the Post.
Taking formula same as in compression members.
Post at ind of Truss III
Jength $=12.5$ feet. $P=3550 \times 6=21300$ pounds.

$$
21300=\left(20000-\frac{12.5 \times 12}{1.57}\right)(1.4 \times 2)=31920 \text { pounds. }
$$

Use two channel bars NO. 364. Depth of channel $=4$ inches. Weight of single channel bar $=5$ pounds per foot.

Post Between Trusses Number 2 and 3.
Took crusher as weighing 2000 pounds. Area of flooring $=60 \times 20.5=1230$ square feet $\times 100=12300$ pounds.

Took flooring as weighing 100 pounds per square foot. $123000+$ weight of machinery $=\frac{123000+2000}{2}=62500$ pounds. $\mathbf{P}=(8550 \times 6)+(3455 \times 4)+62500=97620$ pounds.

$$
97620=\left(20000-90 \frac{12.4 \times 12}{2.09}\right)(2 \times 3.6)=999200
$$

Use two channel bars No. 362. Depth of channel $=6$ inches. Weight $=12$ pounds per single foot.

Post betreen Trusses No. 1 and 2.
Length=31.7 feet but made it 26 feet and enforced it near its middle point.

$$
\begin{aligned}
& P=(3455 \times 4)+(3500 \times 5)=31320 \text { pounds. } \\
& 31320=\left(20,000-90 \frac{16 \times 12}{1.41}\right)(2.4 \times 2)=38400
\end{aligned}
$$

Used two channel bars No. 364. Depth of Channel $=4$ inches. Weight of single channel $=8.25$ pounds .
Post at end of Truss No. I.

Length $=23.8$ feet. $\quad P=3500 \times 5=17500$ pounds.

$$
17500=\left(20,000-00 \frac{23.8 \times 12}{1.94}\right)(1.7 \times 2)=23800
$$

Used two channel bars No. 363
Depth of Channel $=5$ inches.
Weight per single channel bar $=6$ pounds.

Lattice $\mathrm{pars}^{\text {ars Post. }}$
For channel bars at end of Pruss No. III From DuBois,page 407. Having the depth of channel as 4 insehes, take n as equal to 5 inches and from table get y equal to 6 inches. Length of bar is equal to 7.5 inches.

For channel bars Between Trusses Nos. II and III.
Here depth of channel is equal to 6 inches.then n is equal to 8 inches and y equal to 7 inches. Length of bar is equal to $105 / 8$ inches.

For Chamel Bar Between Trusses No. 1 and 2.
Take the dimensions the same as inchamel bar at end of truss No. III.

For Channel Bar at mind of Truss No. 1.
Depth of channti is equal to 5 inches, r taken as 7 inches and y equal to 6.5 inches. Length of bar is equal to $99 / 16$ inches.

As depth of charnel bars on the different trusses are $4,6,4$ and 5 inches respectively, took all bars as equal to 6 inches. This is done because they are all equal to or below 6 inches. From table on page 406 (DuBois) get dimensions for lattice bars as $13 / 4 x$ 5/16 inches. Weight of bars i.s equal to 7.82 pounds per foot. Dimensions of Stay Plates.

Stay plates,for all channel bars are all of thickness $1 / 4$ inch as depth of chamels are less than 8 inches.

The length of plate is ottained by formula

$$
I=d+\frac{2 d}{0}+2
$$

The stay plates are sirgle riveted lacine. For chanmel bar at end of truss No. III, the length of stay plate is equal to $\mathbf{8 . 5}$ inches.

For channel bars between trusses Nos. 2 and 3 the length of stay plate is equal to $102 / 3$ inches. Stay plate in Channel bars between trusses Nos. 1 and 2,length is equal to 8 inches. For stay plate at end of truss No. 1 , the length of plate is equal to $94 / 5$ unches.

Dimensions of Rivets on Lattice Bars. Worked out by formula, diameter of all rivets $d=11 / 4 t+3 / 16$
$=(11 / 4 \times 5 / 16)+3 / 16=37 / 64$ inches. Thickness of Eyebars at Pins.

Use one inch pins. The largest stress is a little over three tonsand taking linear bearing for each pin as . 16 inches for each ton.
$.16 \times 3=.48$ make this equal to .5 imches for thickness. Calculation for F goor Beams.
$R=\frac{3 \mathrm{my} 7^{2}}{2 T}=\frac{3 \times 150 \times 20 \times 756.25}{2 \times 16000}=211$
$m=$ total load in pounds per equare foot.
$\mathrm{y}=$ diameter between teams.
1 =xpan of beam in feet

$R=$ the section modulus in inch units.
T found in Carnegiv(for steel) as 16000 pounds per square inch. Flooring was taken as 150 pounds per square foot,including machinery. Now looking up R which corresponds to 211.7 ,find a m301C is necessary. Depth of eye beam is 20 inches. Weight 由f beam is 80 inches per foot.

For lower Beam.
$R=\frac{3 \times 150 \times 20 \times 44 p}{2 \times 1600}=123.9$ pounds.
This R corresponds to the R for a No. 301 A beam in Carmegie. Depth of Beam is equal to 20 inches. Weight equal to 64 pounds per foot.

Flooring.
Put wooden beams on top of the steel eye bars, and on top of this laid 2 inches planks. Assumed wooden stringers of $6 x 12$ and solving formula used above for spacing $18 \frac{\mathrm{tb} \mathrm{h}^{3}}{\mathrm{mb}^{2} v} \frac{1000 \times 6 \times 1728}{18 \times 100 \times 400 \times 6}=$ 2. 4 feet. Made spacing equal to 2.5 feet. M was taken as 100 pounds per square foot as the weight of the steel beams was taken off.

Dimension of Other Wooden Beams.
Wooden frame work for Grizzley taken as 6 vy 8 inches.
The size of stringers for track taken as $4 x 6$ inches.
Gross ties for track taken as 6×8 inches.
Width of track taken as $2 Q$ inches.
Dimension of Pulleys.
Pulleys for rolls run 160 revolutions per minute.
Belts for rolls are 6 inches in diameter. Fly wheel on roll 5 feet in diameter by 6 inches face. Now take pulley on shaft as 4 feet in diameter, then the maber of revolutions that they would have to make is found as follows:

160 : $n=5: 5$ or $n=200$ revolutions por minute.
Driving pulley for Gates Crusher is 32 inches in diameter and
face is 12 inches. Makes 400 revolutions per minute. Diameter of pulley is $5 \mathrm{l} / 3$ feet. Found as follows.
$n: 32400: 200$ or $n=64$ inches inm $51 / 3$ feet.
Driving pulley doe Dodge Crusher is 36 inches in diameter by 10 inch face. Runs at 250 revolutions per minute. Size of pulley found thus:
$3: n$: $200: 250$ or $n=33 / 4$ feet.
Driving pulley for all spiral conveybrs make 50 revolutions per minute and have a dimater of 40 inches. Size of pulley is

$$
n: 40=50: 200 \text { or } n=10 \text { inches. }
$$

Driving pulioy for separator makes 200 revolutions per minute, diameter of pulley same as driging pulley on separator or equal to two feet. Cylinder on drivers make one revolution per minute. Driving wheel on cylinder is two feet in diameter and cylinder is 4 feet in diameter.

Then drivirg wheel revolves thus:

$$
1: n=2: 4 \text { or } n=2 \text { revolutions per minute. }
$$

But intermediate were on driver is 4.5 feet in damter. Then this revolves two revolutions as it is on the same shaft.

This wheel turns on axis by means of a small cog wheel 8 inches in diameter. This $\notin c o g$ wheel revolves n revolutions per minute.

$$
2: n=8:(4.5 \times 12) \text { or } n=131 / 4 \text { revolutions. }
$$

Transmission of this pulley on the next cog wheel is as one to three or about 13.5×340.5 revolutions por minute. At the other end of this shaft is a wheel 6 feet in diameter, this makes the same number of revolutikns, that is 40.5

$$
40.5: 200=n \quad 6 \text { or } n=1.2 \text { feet. }
$$

When w=width of bolt.
HP =horse power $=5$
$V=$ velocity $=\mathbb{T i n}=3.14 \times 1.2 \times 200=753.6$
$n=$ number of revolutions and $d=$ diameter.
Takiyg HP for each as 2.5 there being two driers then HP=2.5 $\times 2=5$ width $=\frac{1000 \times 5}{753.6}=6$ inches.

Cylinders on roasters make 20 revolutions per hour or $1 / 3$ revolutions per minute. Shaft makes 200 revolutions per minute.

Driving wheel two feet in diameter and cylinder is four feet in diameter.

Driving wheel revolves thus:
$1 / 3: n=2: 4$ or $n=2 / 3$ revolutions por minute.
But intermettant wheel on roasters is 4.5 feet in diameter, these revolve $2 / 3$ times por minute as they are on the same shaft.

This wheel turns on a axis by means of a small cog wheel, four inches in dimeter.

This cog wheal revolves n revolutions per minute
$2 / 3: n=4:(4.5 \times 12)$ or $n=9$ revolutions.per minute.
fransmisaion of this pulley on the nest cog wheel is as 1 to 3 or mout 9 to $5=45$ revolutions per minute. At the other end of the shaft is a wheel, 6 feet in diameter, this makes the same number of movements as it is on the same azis, that is 45 revolutions.

45: $200=n: 6$ or $n=1.35$ feet.
Width of belt will be

$$
H P=8
$$

$$
v=\pi d n=3.14 \times 1.35 \times 200=848
$$

width $\frac{1000 \times 8}{848}=9.5$ inches.

Horse power Necessary.

Gates Crusher	30 Horse power.
2 Driers $=3 \times 2$	$=6$
Dodge $=$	10
6 Separators $=2 \times 6$	12
3 Rolls $=25 \times 3$	75
4 Roasters $=2 \times 4$	8
22 Spteal Conveyors $=22 \times 1$	22
Total Horse Power	
Calculation of Shaft.	

Upper shaft has 30 Horse Power.
Then Taking formula, $d=\sqrt[4]{4-\text { Horse Pover }}$
where $d=$ diameter.

$$
\mathbf{n}=\text { number of revolutions. }
$$

HP equals horse power.

$$
d=4 \sqrt[4]{\frac{30}{200}}=4 . \sqrt[4]{.15}=4 \times .6=2.4 \text { inches. }
$$

Middle shaft has 80 Horse Power.

$$
d=4 \sqrt[4]{\frac{80}{200}}=4 \sqrt{.4}=4 \times .79=3.16 \text { inches. }
$$

Lowest Shaft has 58 HP.

$$
d=4 \sqrt[4]{\frac{58}{200}}=4 \sqrt[4]{.29=4} \times .7 \pm 2.8 \text { inches. }
$$

