1,640 research outputs found

    Ocean Acidification: The Other CO\u3csub\u3e2\u3c/sub\u3e Problem?

    Get PDF
    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions. Republished with permission from 1 Ann. Rev. Mar. Sci. 169 (2009)

    On the Linearization of the First and Second Painleve' Equations

    Full text link
    We found Fuchs--Garnier pairs in 3X3 matrices for the first and second Painleve' equations which are linear in the spectral parameter. As an application of our pairs for the second Painleve' equation we use the generalized Laplace transform to derive an invertible integral transformation relating two its Fuchs--Garnier pairs in 2X2 matrices with different singularity structures, namely, the pair due to Jimbo and Miwa and the one found by Harnad, Tracy, and Widom. Together with the certain other transformations it allows us to relate all known 2X2 matrix Fuchs--Garnier pairs for the second Painleve' equation with the original Garnier pair.Comment: 17 pages, 2 figure

    Breast cancer cells adapt contractile forces to overcome steric hindrance

    Get PDF
    Cell migration through the extracellular matrix is governed by the interplay between cell-generated propulsion forces, adhesion forces, and resisting forces arising from the steric hindrance of the matrix. Steric hindrance in turn depends on matrix porosity, matrix deformability, cell size, and cell deformability. In this study, we investigate how cells respond to changes in steric hindrance that arise from altered cell mechanical properties. Specifically, we measure traction forces, cell morphology, and invasiveness of MDA-MB 231 breast cancer cells in three-dimensional collagen gels. To modulate cell mechanical properties, we either decrease nuclear deformability by twofold overexpression of the nuclear protein lamin A or we introduce into the cells stiff polystyrene beads with a diameter larger than the average matrix pore size. Despite this increase of steric hindrance, we find that cell invasion is only marginally inhibited, as measured by the fraction of motile cells and the mean invasion depth. To compensate for increased steric hindrance, cells employ two alternative strategies. Cells with higher nuclear stiffness increase their force polarity, whereas cells with large beads increase their net contractility. Under both conditions, the collagen matrix surrounding the cells stiffens dramatically and carries increased strain energy, suggesting that increased force polarity and increased net contractility are functionally equivalent strategies for overcoming an increased steric hindrance

    Extensive dissolution of live pteropods in the Southern Ocean

    Get PDF
    The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94– 1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand

    An Interactive Framework for Teaching Viscoelastic Modeling

    Get PDF
    Rheologic models consisting of combinations of linear elements, such as springs and dashpots, are widely used in biophysics to describe the mechanical and, in particular, the viscoelastic behavior of proteins, cells, tissue, and soft matter. Even simple arrangements with few elements often suffice to recapitulate the experimental data and to provide biophysical insights, making them an ideal subject for educational purposes. To provide students with an intuitive understanding of the mechanical behavior of spring and dashpot models, we describe a computer simulation tool, elastic viscous system simulator (ElViS), written in the JavaScript programming language for designing viscoelastic models via a graphical user interface and simulating the mechanical response to various inputs. As an example application, we designed a virtual laboratory course using ElViS that teaches the basic principles of viscoelastic modeling in a gamelike manner. We then surveyed 50 undergraduate students of a 1-semester course in biophysics who participated in the virtual laboratory course. Students felt that the course was a helpful addition to the lecture and that it improved learning success

    Microwave transmissivity of a metamaterial–dielectric stack

    Get PDF
    Copyright © 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 95 (2009) and may be found at http://link.aip.org/link/?APPLAB/95/174101/1A metamaterial layer comprising of a conducting square mesh surrounding subwavelength holes has a largely pure imaginary effective refractive index. We explore the microwave transmissivity of a stack of such metamaterial layers separated by dielectric spacers. As expected, a family of high transmissivity bands is experimentally observed. It is found that the lowest frequency edge is independent of the number of unit cells making up the structure and is highly tunable by appropriate geometrical design of the metamaterial layers

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter
    • …
    corecore