23 research outputs found

    Evidence for non-axisymmetry in M31 from wide-field kinematics of stars and gas

    Full text link
    As the nearest large spiral galaxy, M31 provides a unique opportunity to learn about the structure and evolutionary history of this galaxy type in great detail. Among the many observing programs aimed at M31 are microlensing studies, which require good three-dimensional models of the stellar mass distribution. Possible non-axisymmetric structures like a bar need to be taken into account. Due to M31's high inclination, the bar is difficult to detect in photometry alone. Therefore, detailed kinematic measurements are needed to constrain the possible existence and position of a bar in M31. We obtained ≈\approx 220 separate fields with the optical IFU spectrograph VIRUS-W, covering the whole bulge region of M31 and parts of the disk. We derive stellar line-of-sight velocity distributions from the stellar absorption lines, as well as velocity distributions and line fluxes of the emission lines Hβ\beta, [OIII] and [NI]. Our data supersede any previous study in terms of spacial coverage and spectral resolution. We find several features that are indicative of a bar in the kinematics of the stars, we see intermediate plateaus in the velocity and the velocity dispersion, and correlation between the higher moment h3h3 and the velocity. The gas kinematics is highly irregular, but is consistent with non-triaxial streaming motions caused by a bar. The morphology of the gas shows a spiral pattern, with seemingly lower inclination than the stellar disk. We also look at the ionization mechanisms of the gas, which happens mostly through shocks and not through starbursts.Comment: 23 pages, 39 figures; accepted for publication in A&

    Re-growth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W

    Full text link
    Previous studies have reported the existence of two counter-rotating stellar disks in the early-type spiral galaxy NGC7217. We have obtained high-resolution optical spectroscopic data (R ~ 9000) with the new fiber-based Integral Field Unit instrument VIRUS-W at the 2.7m telescope of the McDonald Observatory in Texas. Our analysis confirms the existence of two components. However, we find them to be co-rotating. The first component is the more luminous (~ 77% of the total light), has the higher velocity dispersion (~ 170 km/s) and rotates relatively slowly (projected vmaxv_{max} = 50 km/s). The lower luminosity second component, (~ 23% of the total light), has a low velocity dispersion (~ 20 km/s) and rotates quickly (projected vmaxv_{max} = 150 km/s). The difference in the kinematics of the two stellar components allows us to perform a kinematic decomposition and to measure the strengths of their Mg and Fe Lick indices separately. The rotational velocities and dispersions of the less luminous and faster component are very similar to those of the interstellar gas as measured from the [OIII] emission. Morphological evidence of active star formation in this component further suggests that NGC7217 may be in the process of (re)growing a disk inside a more massive and higher dispersion stellar halo. The kinematically cold and regular structure of the gas disk in combination with the central almost dust-free morphology allows us to compare the dynamical mass inside of the central 500pc with predictions from a stellar population analysis. We find agreement between the two if a Kroupa stellar initial mass function is assumed.Comment: accepted for publication by MNRA

    Central rotations of Milky Way Globular Clusters

    Full text link
    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of the ACS survey of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.Comment: 6 pages, 3 figures; accepted for publication in ApJ Letter

    Spectroscopic decomposition of NGC 3521: unveiling the properties of the bulge and disc

    Full text link
    We study the kinematics and the stellar populations of the bulge and disc of the spiral galaxy NGC 3521. At each position in the field of view, we separate the contributions of the bulge and the disc from the total observed spectrum and study their kinematics, age, and metallicities independently. Their properties are clearly distinct: the bulge rotates more slowly, has a higher velocity dispersion, and is less luminous than the disc. We identify three main populations of stars in NGC 3521: old (≥7\geq7 Gyr), intermediate (≈\approx 3 Gyr), and young (≤\leq1 Gyr). The mass and light of NGC 3521 are dominated by the intermediate stellar population. The youngest population contributes mostly to the disc component and its contribution increases with radius. We also study the luminosity-weighed properties of the stars in NGC 3521. Along the photometric major axis, we find: i) no age gradient for the stars in the bulge, and a negative age gradient for the stars in the disc; ii) negative metallicity gradients and sub-solar α\alpha-enhancement for both the bulge and the disc. We propose the following picture for the formation of NGC 3521: initial formation a long time ago (≥7\geq 7 Gyr), followed by a second burst of star formation or a merger (≈\approx 3 Gyrs ago), which contributed predominantly to the mass-build up of the bulge. Recently (≤1\leq 1 Gyr), the disc of NGC 3521 experienced an additional episode of star formation that started in the innermost regions.Comment: 13 pages, 11 figures, accepted for publication in MNRA

    Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    Full text link
    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high resolution integral field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although 2/7 galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, gamma, are generally robust. The mean and standard deviation of the logarithmic slope for the population are gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when measured in the gas. We also find that the halos are not under concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. We investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. Determining the importance of these correlations will require further model developments and larger observational samples. (Abridged)Comment: 29 pages, 18 figures, 10 tables, accepted for publication in Ap

    Absorption Troughs of Lyα Emitters in HETDEX

    Get PDF
    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyα emitting galaxies (LAEs) 1.88 < z < 3.52. In addition to its cosmological measurements, these data enable studies of Lyα spectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyα profile for the z ∼ 2-3 epoch and to understand their physical properties. We find clear absorption wings around Lyα emission, which extend ∼2000 km s−1 both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 < z < 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 < z < 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyα systems. Simple simulations of Lyα radiative transfer can produce similar troughs due to absorption of light from background sources by H i gas surrounding the LAEs

    Kinematic Signatures of Bulges Correlate with Bulge Morphologies and S\'ersic Index

    Full text link
    We use the Marcario Low Resolution Spectrograph (LRS) at the Hobby-Eberly-Telescope (HET) to study the kinematics of pseudobulges and classical bulges in the nearby universe. We present major-axis rotational velocities, velocity dispersions, and h3 and h4 moments derived from high-resolution (sigma ~ 39 km/s) spectra for 45 S0 to Sc galaxies; for 27 of the galaxies we also present minor axis data. We combine our kinematics with bulge-to-disk decompositions. We demonstrate for the first time that purely kinematic diagnostics of the bulge dichotomy agree systematically with those based on S\'ersic index. Low S\'ersic index bulges have both increased rotational support (higher v/sigma values) and on average lower central velocity dispersions. Furthermore, we confirm that the same correlation also holds when visual morphologies are used to diagnose bulge type. The previously noted trend of photometrically flattened bulges to have shallower velocity dispersion profiles turns to be significant and systematic if the S\'ersic index is used to distinguish between pseudobulges and classical bulges. The correlation between h3 and v/sigma observed in elliptical galaxies is also observed in intermediate type galaxies, irrespective of bulge type. Finally, we present evidence for formerly undetected counter rotation in the two systems NGC 3945 and NGC 4736. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universit\"at M\"unchen, and Georg-August-Universit\"at G\"ottingen.Comment: 49 pages, 16 figures. Accepted for publication in Ap

    HETDEX Public Source Catalog 1 -- Stacking 50K Lyman Alpha Emitters

    Get PDF
    We describe the ensemble properties of the 1.9<z<3.51.9 < z < 3.5 Lyman Alpha Emitters (LAEs) found in the HETDEX survey's first public data release, HETDEX Public Source Catalog 1 (Mentuch Cooper et al. 2023). Stacking the low-resolution (R∼R \sim 800) spectra greatly increases the signal-to-noise ratio, revealing spectral features otherwise hidden by noise, and we show that the stacked spectrum is representative of an average member of the set. The flux limited, Lyα\alpha signal-to-noise ratio restricted stack of 50K HETDEX LAEs shows the ensemble biweight ``average" z∼2.6z \sim 2.6 LAE to be a blue (UV continuum slope ∼−2.4\sim -2.4 and E(B-V) <0.1< 0.1), moderately bright (MUV∼−19.7_{\text{UV}} \sim -19.7) star forming galaxy with strong Lyα\alpha emission (log LLyαL_{Ly\alpha} ∼\sim 42.8 and WλW_{\lambda}(Lyα\alpha) ∼\sim 114\AA), and potentially significant leakage of ionizing radiation. The restframe UV light is dominated by a young, metal poor stellar population with an average age 5-15 Myr and metallicity of 0.2-0.3 Z⊙_{\odot}.Comment: 17 pages, 11 figures, 2 data files (ApJ Accepted

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Bulges Of Nearby Galaxies With Spitzer: The Growth Of Pseudobulges In Disk Galaxies And Its Connection To Outer Disks

    Full text link
    We study star formation rates (SFR) and stellar masses in bulges of nearby disk galaxies, using SFRs and stellar masses derived from Spitzer and GALEX data. At present day SFR the median pseudobulge could have grown the present day stellar mass in 8 Gyr. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk, suggesting that almost all galaxies are increasing their B/T through internal star formation. In pseudobulges, SFR density correlates, positvely, with mass density, this is consistent with that stellar mass being formed by moderate, extended star fromation. As well, SFR density and stellar mass of pseudobulges are shown to be correlated with the stellar mass of the outer disk. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Some disk galaxies with out a large classical bulge, over long periods of extended star formation are able to growth a pseudobulge. In this sense, galaxies with pseudobulges may very well be bulgeless (or "quasi-bulgeless") galaxies, and galaxies with classical bulges are galaxies in which both internal evolution and hierarchical merging are responsible for the bulge mass by fractions that vary from galaxy-to-galaxy. [Abridged]Comment: Accepted to Ap
    corecore