9,661 research outputs found
Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC
The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC
proton collider (CERN, Switzerland) will employ an online gas analysis and
monitoring system of the freon-based gas mixture used. We give an overview of
the CMS RPC gas system, describe the project parameters and first results on
gas-chromatograph analysis. Finally, we report on preliminary results for a set
of monitor RPC.Comment: 9 pages, 8 figures. Presented by Stefano Bianco (Laboratori Nazionali
di Frascati dell'INFN) at the IEEE NSS, San Diego (USA), October 200
High rate, fast timing Glass RPC for the high {\eta} CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount
of data to be collected by the LHC experiments. To achieve this goal in a
reasonable time scale the instantaneous luminosity would also increase by an
order of magnitude up to . The region of the forward
muon spectrometer () is not equipped with RPC stations. The
increase of the expected particles rate up to (including a
safety factor 3) motivates the installation of RPC chambers to guarantee
redundancy with the CSC chambers already present. The actual RPC technology of
CMS cannot sustain the expected background level. The new technology that will
be chosen should have a high rate capability and provides a good spatial and
timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity
(LR) glass is proposed to equip at least the two most far away of the four high
muon stations of CMS. First the design of small size prototypes and
studies of their performance in high-rate particles flux is presented. Then the
proposed designs for large size chambers and their fast-timing electronic
readout are examined and preliminary results are provided.Comment: 14 pages, 11 figures, Conference proceeding for the 2016 Resistive
Plate Chambers and Related Detector
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
The weak nucleon axial-vector form factor for quasi-elastic interactions is
determined using neutrino interaction data from the K2K Scintillating Fiber
detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of
which half are charged-current quasi-elastic interactions nu-mu n to mu- p
occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for
oxygen and assume the form factor is approximately a dipole with one parameter,
the axial vector mass M_A, and fit to the shape of the distribution of the
square of the momentum transfer from the nucleon to the nucleus. Our best fit
result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated
vector form factors from recent electron scattering experiments and a
discussion of the effects of the nucleon momentum on the shape of the fitted
distributions.Comment: 14 pages, 10 figures, 6 table
Optimization of Italian CMS Computing Centers via MIUR funded Research Projects
In 2012, 14 Italian Institutions participating LHC Experiments (10 in CMS) have won a grant from the Italian Ministry of Research (MIUR), to optimize Analysis activities and in general the Tier2/Tier3 infrastructure. A large range of activities is actively carried on: they cover data distribution over WAN, dynamic provisioning for both scheduled and interactive processing, design and development of tools for distributed data analysis, and tests on the porting of CMS software stack to new highly performing / low power architectures
- …
