2,244 research outputs found
Upsilon Production In pp Collisions For Forward Rapidities At LHC
This is a continuation of recent studies of production at the
LHC in pp collisions. Our previous studies were for rapidity y=-1 to 1 for the
CMS detector, while the present study is for y=2.5 to 4.0 at the LHC.Comment: 5 pages, 2 figure
Pointing to the minimum scatter: the generalized scaling relations for galaxy clusters
We introduce a generalized scaling law, M_tot = 10^K A^a B^b, to look for the
minimum scatter in reconstructing the total mass of hydrodynamically simulated
X-ray galaxy clusters, given gas mass M_gas, luminosity L and temperature T. We
find a locus in the plane of the logarithmic slopes and of the scaling
relations where the scatter in mass is minimized. This locus corresponds to b_M
= -3/2 a_M +3/2 and b_L = -2 a_L +3/2 for A=M_gas and L, respectively, and B=T.
Along these axes, all the known scaling relations can be identified (at
different levels of scatter), plus a new one defined as M_tot ~ (LT)^(1/2).
Simple formula to evaluate the expected evolution with redshift in the
self-similar scenario are provided. In this scenario, no evolution of the
scaling relations is predicted for the cases (b_M=0, a_M=1) and (b_L=7/2,
a_L=-1), respectively. Once the single quantities are normalized to the average
values of the sample under considerations, the normalizations K corresponding
to the region with minimum scatter are very close to zero. The combination of
these relations allows to reduce the number of free parameters of the fitting
function that relates X-ray observables to the total mass and includes the
self-similar redshift evolution.Comment: 6 pages, 3 figures. MNRAS in pres
Large-scale inhomogeneities of the intracluster medium: improving mass estimates using the observed azimuthal scatter
Using a set of hydrodynamical simulations of 62 galaxy clusters and groups we
study the ICM of inhomogeneities, focusing on the ones on the large scale that,
unlike clumps, are the most difficult to identify. To this purpose we introduce
the concept of residual clumpiness, C_R, that quantifies the large-scale
inhomogeneity of the ICM. After showing that this quantity can be robustly
defined for relaxed systems, we characterize how it varies with radius, mass
and dynamical state of the halo. Most importantly, we observe that it
introduces an overestimate in the determination of the density profile from the
X-ray emission, which translates into a systematic overestimate of 6 (12)% in
the measurement of M_gas at R_200 for our relaxed (perturbed) cluster sample.
At the same time, the increase of C_R with radius introduces also a ~2%
systematic underestimate in the measurement of the hydrostatic-equilibrium mass
(M_he), which adds to the previous one generating a systematic ~8.5%
overestimate in f_gas in our relaxed sample. Since the residual clumpiness of
the ICM is not directly observable, we study its correlation with the azimuthal
scatter in the X-ray surface brightness of the halo and in the y-parameter
profiles. We find that their correlation is highly significant (r_S = 0.6-0.7),
allowing to define the azimuthal scatter measured in the X-ray surface
brightness profile and in the y-parameter as robust proxies of C_R. After
providing a function that connects the two quantities, we obtain that
correcting the observed gas density profiles using the azimuthal scatter
eliminates the bias in the measurement of M_gas for relaxed objects, which
becomes (0+/-2)% up to 2R_200, and reduces it by a factor of 3 for perturbed
ones. This method allows also to eliminate the systematics on the measurements
of M_he and f_gas, although a significant halo to halo scatter remains.
(abridged)Comment: 18 pages, 17 figures, 3 tables. Submitted to MNRAS, revised after
referee's comment
On the role of AGN feedback on the thermal and chemodynamical properties of the hot intra-cluster medium
We present an analysis of the properties of the ICM in an extended set of
cosmological hydrodynamical simulations of galaxy clusters and groups performed
with the TreePM+SPH GADGET-3 code. Besides a set of non-radiative simulations,
we carried out two sets of simulations including radiative cooling, star
formation, metal enrichment and feedback from supernovae, one of which also
accounts for the effect of feedback from AGN resulting from gas accretion onto
super-massive black holes. These simulations are analysed with the aim of
studying the relative role played by SN and AGN feedback on the general
properties of the diffuse hot baryons in galaxy clusters and groups: scaling
relations, temperature, entropy and pressure radial profiles, and ICM chemical
enrichment. We find that simulations including AGN feedback produce scaling
relations that are in good agreement with X-ray observations at all mass
scales. However, our simulations are not able to account for the observed
diversity between CC and NCC clusters: unlike for observations, we find that
temperature and entropy profiles of relaxed and unrelaxed clusters are quite
similar and resemble more the observed behaviour of NCC clusters. As for the
pattern of metal enrichment, we find that an enhanced level of iron abundance
is produced by AGN feedback with respect to the case of purely SN feedback. As
a result, while simulations including AGN produce values of iron abundance in
groups in agreement with observations, they over-enrich the ICM in massive
clusters. The efficiency of AGN feedback in displacing enriched gas from halos
into the inter-galactic medium at high redshift also creates a widespread
enrichment in the outskirts of clusters and produces profiles of iron abundance
whose slope is in better agreement with observations.Comment: 23 pages, 14 figures, 1 table, accepted for publication in MNRA
Evolution of the metal content of the intra-cluster medium with hydrodynamical simulations
We present a comparison between simulation results and X-ray observational
data on the evolution of the metallicity of the intra-cluster medium (ICM). The
simulations of galaxy clusters were performed with the Tree-SPH Gadget2 code
that includes a detailed model of chemical evolution, by assuming three
different shapes for the stellar initial mass function (IMF), namely the
Salpeter (1955), Kroupa (2001) and Arimoto-Yoshii (1987) IMF. Our simulations
predict significant radial gradients of the Iron abundance, which extend over
the whole cluster virialized region. At larger radii, we do not detect any
flattening of the metallicity profiles. As for the evolution of the ICM metal
(Iron) abundance out to z=1, we find that it is determined by the combined
action of (i) the sinking of already enriched gas, (ii) the ongoing metal
production in galaxies and (iii) the locking of ICM metals in newborn stars. As
a result, rather than suppressing the metallicity evolution, stopping star
formation at z=1 has the effect of producing an even too fast evolution of the
emission-weighted ICM metallicity with too high values at low redshift.
Finally, we compare simulations with the observed rate of type-Ia supernovae
per unit B-band luminosity (SnU_B). We find that our simulated clusters do not
reproduce the decreasing trend of SnU_B at low redshift, unless star formation
is truncated at z=1.Comment: 9 pages, 7 figures, to appear in MNRA
Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution
We analyse cosmological hydrodynamical simulations of galaxy clusters to
study the X-ray scaling relations between total masses and observable
quantities such as X-ray luminosity, gas mass, X-ray temperature, and .
Three sets of simulations are performed with an improved version of the
smoothed particle hydrodynamics GADGET-3 code. These consider the following:
non-radiative gas, star formation and stellar feedback, and the addition of
feedback by active galactic nuclei (AGN). We select clusters with , mimicking the typical selection of
Sunyaev-Zeldovich samples. This permits to have a mass range large enough to
enable robust fitting of the relations even at . The results of the
analysis show a general agreement with observations. The values of the slope of
the mass-gas mass and mass-temperature relations at are 10 per cent lower
with respect to due to the applied mass selection, in the former case,
and to the effect of early merger in the latter. We investigate the impact of
the slope variation on the study of the evolution of the normalization. We
conclude that cosmological studies through scaling relations should be limited
to the redshift range , where we find that the slope, the scatter, and
the covariance matrix of the relations are stable. The scaling between mass and
is confirmed to be the most robust relation, being almost independent of
the gas physics. At higher redshifts, the scaling relations are sensitive to
the inclusion of AGNs which influences low-mass systems. The detailed study of
these objects will be crucial to evaluate the AGN effect on the ICM.Comment: 24 pages, 11 figures, 5 tables, replaced to match accepted versio
How Baryonic Processes affect Strong Lensing properties of Simulated Galaxy Clusters
The observed abundance of giant arcs produced by galaxy cluster lenses and
the measured Einstein radii have presented a source of tension for LCDM.
Previous cosmological tests for high-redshift clusters (z>0.5) have suffered
from small number statistics in the simulated sample and the implementation of
baryonic physics is likely to affect the outcome. We analyse zoomed-in
simulations of a fairly large sample of cluster-sized objects, with Mvir >
3x10^14 Msun/h, identified at z=0.25 and z=0.5, for a concordance LCDM
cosmology. We start with dark matter only simulations, and then add gas
hydrodynamics, with different treatments of baryonic processes: non-radiative
cooling, radiative cooling with star formation and galactic winds powered by
supernova explosions, and finally including the effect of AGN feedback. We find
that the addition of gas in non-radiative simulations does not change the
strong lensing predictions significantly, but gas cooling and star formation
together significantly increase the number of expected giant arcs and the
Einstein radii, particularly for lower redshift clusters and lower source
redshifts. Further inclusion of AGN feedback reduces the predicted strong
lensing efficiencies such that the lensing probability distributions becomes
closer to those obtained for simulations including only dark matter. Our
results indicate that the inclusion of baryonic physics in simulations will not
solve the arc-statistics problem at low redshifts, when the physical processes
included provide a realistic description of cooling in the central regions of
galaxy clusters. [Abridged]Comment: 19 pages, 18 figures, 1 table, Accepted for publication in MNRA
Mass\u2013metallicity relation from cosmological hydrodynamical simulations and X-ray observations of galaxy groups and clusters
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich clusters, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the smoothed-particle-hydrodynamic GADGET-3 code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGNs). The scaling between the metallicity and the temperature obtained in the simulations agrees well in trend and evolution with the observational results obtained from two data samples characterized by a wide range of masses and a large redshift coverage. We find that the iron abundance in the cluster core (r < 0.1R500) does not correlate with the temperature nor presents a significant evolution. The scale invariance is confirmed when the metallicity is related directly to the total mass. The slope of the best-fitting relations is shallow (\u3b2 \u2dc -0.1) in the innermost regions (r < 0.5R500) and consistent with zero outside. We investigate the impact of the AGN feedback and find that it plays a key role in producing a constant value of the outskirts metallicity from groups to clusters. This finding additionally supports the picture of early enrichment
The history of chemical enrichment in the intracluster medium from cosmological simulations
The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analysing a sample of simulated galaxy clusters, we study the chemical enrichment of the ICM, its evolution, and its relation with the physical processes included in the simulation and with the thermal properties of the core. These simulations, consisting of re-simulations of 29 Lagrangian regions performed with an upgraded version of the smoothed particle hydrodynamics (SPH) gadget-3 code, have been run including two different sets of baryonic physics: one accounts for radiative cooling, star formation, metal enrichment and supernova (SN) feedback, and the other one further includes the effects of feedback from active galactic nuclei (AGN). In agreement with observations, we find an anti-correlation between entropy and metallicity in cluster cores, and similar radial distributions of heavy-element abundances and abundance ratios out to large cluster-centric distances ( 3cR180). In the outskirts, namely outside of 3c0.2 R180, we find a remarkably homogeneous metallicity distribution, with almost flat profiles of the elements produced by either SNIa or SNII. We investigated the origin of this phenomenon and discovered that it is due to the widespread displacement of metal-rich gas by early (z > 2-3) AGN powerful bursts, acting on small high-redshift haloes. Our results also indicate that the intrinsic metallicity of the hot gas for this sample is on average consistent with no evolution between z = 2 and z = 0, across the entire radial range
One and two dimensional analysis of 3pi correlations measured in Pb+Pb interactions
3pi- correlations from Pb+Pb collisions at 158 GeV/c per nucleon are
presented as measured by the focusing spectrometer of the NA44 experiment at
CERN. The three-body effect is found to be stronger for PbPb than for SPb. The
two-dimensional three-particle correlation function is also measured and the
longitudinal extension of the source is larger than the transverse extension
- …