118 research outputs found

    Biofuels, greenhouse gases and climate change. A review

    Get PDF
    International audienceBiofuels are fuels produced from biomass, mostly in liquid form, within a time frame sufficiently short to consider that their feedstock (biomass) can be renewed, contrarily to fossil fuels. This paper reviews the current and future biofuel technologies, and their development impacts (including on the climate) within given policy and economic frameworks. Current technologies make it possible to provide first generation biodiesel, ethanol or biogas to the transport sector to be blended with fossil fuels. Still under-development 2nd generation biofuels from lignocellulose should be available on the market by 2020. Research is active on the improvement of their conversion efficiency. A ten-fold increase compared with current cost-effective capacities would make them highly competitive. Within bioenergy policies, emphasis has been put on biofuels for transportation as this sector is fast-growing and represents a major source of anthropogenic greenhouse gas emissions. Compared with fossil fuels, biofuel combustion can emit less greenhouse gases throughout their life cycle, considering that part of the emitted CO2 returns to the atmosphere where it was fixed from by photosynthesis in the first place. Life cycle assessment (LCA) is commonly used to assess the potential environmental impacts of biofuel chains, notably the impact on global warming. This tool, whose holistic nature is fundamental to avoid pollution trade-offs, is a standardised methodology that should make comparisons between biofuel and fossil fuel chains objective and thorough. However, it is a complex and time-consuming process, which requires lots of data, and whose methodology is still lacking harmonisation. Hence the life-cycle performances of biofuel chains vary widely in the literature. Furthermore, LCA is a site- and timeindependent tool that cannot take into account the spatial and temporal dimensions of emissions, and can hardly serve as a decision-making tool either at local or regional levels. Focusing on greenhouse gases, emission factors used in LCAs give a rough estimate of the potential average emissions on a national level. However, they do not take into account the types of crop, soil or management practices, for instance. Modelling the impact of local factors on the determinism of greenhouse gas emissions can provide better estimates for LCA on the local level, which would be the relevant scale and degree of reliability for decision-making purposes. Nevertheless, a deeper understanding of the processes involved, most notably N2O emissions, is still needed to definitely improve the accuracy of LCA. Perennial crops are a promising option for biofuels, due to their rapid and efficient use of nitrogen, and their limited farming operations. However, the main overall limiting factor to biofuel development will ultimately be land availability. Given the available land areas, population growth rate and consumption behaviours, it would be possible to reach by 2030 a global 10% biofuel share in the transport sector, contributing to lower global greenhouse gas emissions by up to 1 GtCO2 eq.year−1 (IEA, 2006), provided that harmonised policies ensure that sustainability criteria for the production systems are respected worldwide. Furthermore, policies should also be more integrative across sectors, so that changes in energy efficiency, the automotive sector and global consumption patterns converge towards drastic reduction of the pressure on resources. Indeed, neither biofuels nor other energy source or carriers are likely to mitigate the impacts of anthropogenic pressure on resources in a range that would compensate for this pressure growth. Hence, the first step is to reduce this pressure by starting from the variable that drives it up, i.e. anthropic consumptions

    La diversitĂ© variĂ©tale Ă  l’échelle d’un territoire est-elle un levier pour amĂ©liorer les performances agronomiques de la luzerne ? Analyse d’une Ă©tude de simulation avec le modĂšle STICS

    Get PDF
    La diversitĂ© variĂ©tale Ă  l’échelle d’un territoire est-elle un levier pour amĂ©liorer les performances agronomiques de la luzerne ? Analyse d’une Ă©tude de simulation avec le modĂšle STICS. 2. Rencontres Francophones sur les LĂ©gumineuses (RFL2

    Soil organic carbon models need independent time-series validation for reliable prediction

    Full text link
    Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depending on their objectives and features, discuss how validation of predictive models can be improved. We find a critical lack of independent validation using observed time series. Conducting such validations should be a priority to improve the model reliability. Approximately 60% of the models we analysed are not designed for predictions, but rather for conceptual understanding of soil processes. These models provide important insights by identifying key processes and alternative formalisms that can be relevant for predictive models. We argue that combining independent validation based on observed time series and improved information flow between predictive and conceptual models will increase reliability in predictions

    Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils

    Get PDF
    ACKNOWLEDGEMENTS This study was supported by the project “C and N models inter-comparison and improvement to assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014- 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data holders for the Long Term Bare-Fallows, who made their data available and provided additional information on the sites: V. Romanenkov, B.T. Christensen, T. KĂ€tterer, S. Houot, F. van Oort, A. Mc Donald, as well as P. BarrĂ©. The input of B. Guenet and C. Chenu contributes to the ANR “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The input of M. Abdalla contributes to the SUPER-G project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774124.Peer reviewedPostprin

    Biofuels, greenhouse gases and climate change. A review

    Full text link

    Contribution à une méthode d'évaluation écologique et technique de la gestion des bordures de champs en exploitation agricole

    No full text
     DiplĂŽme : DiplĂŽme d'IngĂ©nieur Agronomeil s'agit d'un type de produit dont les mĂ©tadonnĂ©es ne correspondent pas aux mĂ©tadonnĂ©es attendues dans les autres types de produit : DISSERTATIONL’objectif de ce travail est de tester et de dĂ©velopper une mĂ©thode permettant un diagnostic des pratiques de gestion des bordures de champs en exploitation agricole, dans un objectif d’aide Ă  la dĂ©cision.A partir du cas de quatre exploitations laitiĂšres d’Ille-et-Vilaine, nous avons analysĂ© l’organisation des pratiques de gestion : Ă©tude des niveaux de contraintes et comparaison des rĂ©sultats obtenus par 3 mĂ©thodes diffĂ©rentes (enquĂȘtes Ă  l’échelle de l’exploitation / de la bordure, observations de terrain). Puis nous avons testĂ© et dĂ©veloppĂ© un indicateur Ă  partir de relevĂ©s floristiques sur les bordures de champs des quatre exploitations ; nous avons utilisĂ© pour cela des mĂ©thodes statistiques d’analyse multivariĂ©e. Enfin, nous avons confrontĂ© des rĂ©sultats de l’indicateur Ă  l’échelle des exploitations et des pratiques recensĂ©es pour chacune d’elle.Pour l’organisation des pratiques de gestion, les agriculteurs prennent en compte des contraintes Ă  diffĂ©rents niveaux (de la bordure de champ Ă  l’exploitation entiĂšre). Dans les quatre exploitations Ă©tudiĂ©es, les diffĂ©rences entre le modĂšle stratĂ©gique exprimĂ© par les agriculteurs, pour prendre en compte ces contraintes, et les pratiques effectives sont faibles. L’enquĂȘte Ă  l’échelle de la bordure permet d’observer prĂ©cisĂ©ment la prise en compte des contraintes locales (bordure et parcelle adjacente) par les agriculteurs. Les observations sur le terrain permettent de vĂ©rifier des donnĂ©es obtenues par enquĂȘte et de connaĂźtre l’importance du pĂąturage et du piĂ©tinement des bordures par les animaux.La situation d’une bordure de champ par rapport Ă  3 couverts vĂ©gĂ©taux de rĂ©fĂ©rence (forestier, prairial et Ă  adventices) apporte une information Ă©cologique et peut ĂȘtre mise en rapport avec les pratiques agricoles. Ces couverts de rĂ©fĂ©rence peuvent ĂȘtre dĂ©finis par un rĂ©fĂ©rentiel d’une dizaine d’espĂšces herbacĂ©es. Les proportions entre espĂšces de chaque couvert prĂ©sentes sur la bordure peuvent ĂȘtre utilisĂ©es comme un indicateur synthĂ©tique. Elles permettent en outre une reprĂ©sentation, sur le principe du triangle de texture, visuellement intĂ©ressante. Cet indicateur permet d’évaluer l’impact des pratiques de gestion des bordures mais aussi des pratiques culturales ayant lieu dans les parcelles adjacentes et qui sont liĂ©es Ă  la succession culturale.Cette mĂ©thode permet de mettre en rapport l’évaluation Ă©cologique des bordures de champs avec les pratiques agricoles. Elle est une base intĂ©ressante pour discuter des possibilitĂ©s de changements avec l’agriculteur, en tenant compte de ses contraintes. Elle met aussi en avant des difficultĂ©s liĂ©es Ă  l’évolution de l’agriculture, aux politiques agricoles... Pour utiliser cette mĂ©thode dans un objectif d’aide Ă  la dĂ©cision, il reste Ă  savoir comment Ă©volue l’état Ă©cologique des bordures de champs aprĂšs un changement des pratiques

    Étude des bilans d'eau, d'azote et de carbone dans des agrosystĂšmes dĂ©diĂ©s Ă  la production de biomasse en fonction des espĂšces et des pratiques culturales

    No full text
    Second generation biofuels could provide renewable energy to the transportation sector while mitigating climate change. However, their greenhouse gas, energy and environmental balances will probably depend on the feedstock used for their production. Bioenergy crops that could be used for second generation biofuels will have to fulïŹl several requirements, including high productivity, low input requirements, and low environmental impacts. The objective of this work was to assess the water, N and C balances at the plot scale for various bioenergy crops with different management. The study is based on a long term field experiment, called “Biomass & Environment”, established at the INRA experimental station in EstrĂ©es-Mons, northern France. This experiment includes two perennial C4 crops (Miscanthus × giganteus and switchgrass), two semi-perennial forage C3 crops (fescue and alfalfa) and two annual C4/C3 crops (fibre sorghum and triticale). It compares two nitrogen treatments and two dates of harvest of perennial crops: early (October) or late harvest (February). Measurements have been carried out on: i) biomass production; ii) soil water stocks, monitored continuously during 7 years; iii) root depth and density; iv) drainage and nitrate concentration in drained water, assessed from soil water and mineral N content measurements (in mid-autumn and late winter) and using the STICS model; v) soil organic carbon (SOC) stocks in 2006 and 2011-2012; vi) the fate of 15N-labelled fertiliser applied during 4 or 5 successive years.Thanks to their deep rooting system, perennial and semi-perennial crops consumed more water than annual crops. The amount of drained water was lower under semi-perennial than annual crops (64 vs. 133 mm yr-1 average over 7 years), despite an equivalent biomass production. It was intermediate under perennial crops (56-137 mm yr-1) and negatively correlated to biomass production, itself depending on crop species and N rate. Nitrate concentration in drained water varied between 2 and 23 mg l-1. It was generally lower under perennial than other crops, except for miscanthus on the first year of measurement. SOC stocks increased markedly over time under semi-perennial crops (+0.93 t C ha-1 yr-1), whereas no significant change occurred under perennial and annual crops. The 15N recovery in the harvested biomass was lower for perennial than other crops, particularly when harvested late, but compensated by a higher 15N recovery in belowground organs and soil. The overall 15N recovery in the soil-plant system was 69% in perennials, 61% in semi-perennials and 56% in annual crops, suggesting that important fertiliser losses occurred through volatilisation and denitrification. In our pedo-climatic conditions, the C4 perennial crops performed best in terms of production, water and nitrogen use efficiency, and nitrogen losses towards the groundwater and the atmosphere. However, only semi-perennial crops yielded in SOC sequestration.Les biocarburants de 2Ăšme gĂ©nĂ©ration pourraient fournir une Ă©nergie renouvelable au secteur des transports et ainsi permettre de lutter contre le changement climatique. Toutefois, leurs bilans gaz Ă  effet de serre, Ă©nergĂ©tiques et environnementaux seront probablement trĂšs dĂ©pendants des ressources utilisĂ©es. Les cultures lignocellulosiques candidates Ă  la production de biocarburant 2G devront ainsi concilier forte productivitĂ©, faibles besoins en intrants et faibles impacts environnementaux. L’objectif de la thĂšse a Ă©tĂ© de quantifier les bilans d’eau, d’azote et de carbone Ă  l’échelle de la parcelle, pour diffĂ©rentes cultures candidates et diffĂ©rentes pratiques culturales. Nous nous sommes appuyĂ©s sur le dispositif expĂ©rimental de long terme « Biomasse & Environnement », mis en place en 2006 Ă  EstrĂ©es-Mons, en Picardie. Il compare deux cultures pĂ©rennes en C4 (Miscanthus × giganteus et switchgrass), deux cultures pluriannuelles fourragĂšres en C3 (fĂ©tuque et luzerne) et deux cultures annuelles rĂ©coltĂ©es en plante entiĂšre (sorgho fibre et triticale). Il inclut deux niveaux de fertilisation et deux dates de rĂ©colte pour les cultures pĂ©rennes : rĂ©colte prĂ©coce (octobre) ou rĂ©colte tardive (fĂ©vrier). Les mesures effectuĂ©es ont portĂ© sur : i) la production de biomasse, ii) l’évolution des stocks d’eau du sol en continu pendant 7 ans, iii) la profondeur et la densitĂ© des systĂšmes racinaires, iv) le drainage et la concentration en nitrate de l’eau drainĂ©e, Ă©valuĂ©s avec le modĂšle STICS Ă  partir des stocks d’eau et d’azote minĂ©ral du sol mesurĂ©s en milieu d’automne et fin d’hiver, v) les stocks de carbone organique du sol en 2006 et 2011-2012, vi) le devenir de l’engrais azotĂ©, suivi par marquage isotopique 15N de l'engrais pendant 4 ou 5 annĂ©es successives.GrĂące Ă  leur enracinement profond, les cultures pĂ©rennes et pluriannuelles ont prĂ©levĂ© davantage d’eau que les cultures annuelles, notamment en profondeur. Le drainage sous les cultures pluriannuelles a Ă©tĂ© plus faible que sous les cultures annuelles (64 contre 133 mm an-1 en moyenne sur 7 ans), malgrĂ© une production de biomasse Ă©quivalente. Il a Ă©tĂ© intermĂ©diaire pour les cultures pĂ©rennes (56-137 mm an-1) et trĂšs fortement liĂ© Ă  la production (elle-mĂȘme fonction de l’espĂšce et de la fertilisation azotĂ©e). La concentration en nitrate a variĂ© de 2 Ă  23 mg l-1. Elle a Ă©tĂ© en gĂ©nĂ©ral plus faible sous les cultures pĂ©rennes, sauf pour le miscanthus lors de la premiĂšre annĂ©e de mesure. Les stocks de carbone du sol ont augmentĂ© fortement sous les cultures pluriannuelles (+0.93 t C ha-1 an-1) mais n'ont pas variĂ© significativement pour les autres cultures. Le 15N retrouvĂ© dans la biomasse rĂ©coltĂ©e a Ă©tĂ© plus faible pour les cultures pĂ©rennes, particuliĂšrement lorsqu’elles sont rĂ©coltĂ©es tardivement, mais cela est compensĂ© par une plus forte proportion de 15N dans leurs organes souterrains et dans le sol. Le 15N retrouvĂ© dans le systĂšme sol-plante a Ă©tĂ© de 69% de l’azote apportĂ© pour les cultures pĂ©rennes, 61% pour les cultures pluriannuelles et 56% pour les cultures annuelles, ce qui suggĂšre que des pertes importantes ont eu lieu par volatilisation et dĂ©nitrification. Dans nos conditions pĂ©doclimatiques, les cultures pĂ©rennes en C4 sont les plus intĂ©ressantes pour concilier forte production de biomasse, forte efficience d’utilisation de l’eau et de l’azote et faibles pertes d’azote vers l’hydrosphĂšre et l’atmosphĂšre. En revanche, seules les cultures pluriannuelles permettent de stocker du carbone Ă  court terme

    Water, nitrogen and carbon balance of perennial and annual bioenergy crops

    No full text
    CT 3 ; EnjS 1-4 ; DĂ©partement E.AWater, nitrogen and carbon balance of perennial and annual bioenergy crops. Exploring lignocellulosic biomass

    Water, nitrogen and carbon balance of bioenergy crops : impact of crop species and cropping practices

    No full text
    Les biocarburants de 2Ăšme gĂ©nĂ©ration pourraient fournir une Ă©nergie renouvelable au secteur des transports et ainsi permettre de lutter contre le changement climatique. Toutefois, leurs bilans gaz Ă  effet de serre, Ă©nergĂ©tiques et environnementaux seront probablement trĂšs dĂ©pendants des ressources utilisĂ©es. Les cultures lignocellulosiques candidates Ă  la production de biocarburant 2G devront ainsi concilier forte productivitĂ©, faibles besoins en intrants et faibles impacts environnementaux. L’objectif de la thĂšse a Ă©tĂ© de quantifier les bilans d’eau, d’azote et de carbone Ă  l’échelle de la parcelle, pour diffĂ©rentes cultures candidates et diffĂ©rentes pratiques culturales. Nous nous sommes appuyĂ©s sur le dispositif expĂ©rimental de long terme « Biomasse & Environnement », mis en place en 2006 Ă  EstrĂ©es-Mons, en Picardie. Il compare deux cultures pĂ©rennes en C4 (Miscanthus × giganteus et switchgrass), deux cultures pluriannuelles fourragĂšres en C3 (fĂ©tuque et luzerne) et deux cultures annuelles rĂ©coltĂ©es en plante entiĂšre (sorgho fibre et triticale). Il inclut deux niveaux de fertilisation et deux dates de rĂ©colte pour les cultures pĂ©rennes : rĂ©colte prĂ©coce (octobre) ou rĂ©colte tardive (fĂ©vrier). Les mesures effectuĂ©es ont portĂ© sur : i) la production de biomasse, ii) l’évolution des stocks d’eau du sol en continu pendant 7 ans, iii) la profondeur et la densitĂ© des systĂšmes racinaires, iv) le drainage et la concentration en nitrate de l’eau drainĂ©e, Ă©valuĂ©s avec le modĂšle STICS Ă  partir des stocks d’eau et d’azote minĂ©ral du sol mesurĂ©s en milieu d’automne et fin d’hiver, v) les stocks de carbone organique du sol en 2006 et 2011-2012, vi) le devenir de l’engrais azotĂ©, suivi par marquage isotopique 15N de l'engrais pendant 4 ou 5 annĂ©es successives.GrĂące Ă  leur enracinement profond, les cultures pĂ©rennes et pluriannuelles ont prĂ©levĂ© davantage d’eau que les cultures annuelles, notamment en profondeur. Le drainage sous les cultures pluriannuelles a Ă©tĂ© plus faible que sous les cultures annuelles (64 contre 133 mm an-1 en moyenne sur 7 ans), malgrĂ© une production de biomasse Ă©quivalente. Il a Ă©tĂ© intermĂ©diaire pour les cultures pĂ©rennes (56-137 mm an-1) et trĂšs fortement liĂ© Ă  la production (elle-mĂȘme fonction de l’espĂšce et de la fertilisation azotĂ©e). La concentration en nitrate a variĂ© de 2 Ă  23 mg l-1. Elle a Ă©tĂ© en gĂ©nĂ©ral plus faible sous les cultures pĂ©rennes, sauf pour le miscanthus lors de la premiĂšre annĂ©e de mesure. Les stocks de carbone du sol ont augmentĂ© fortement sous les cultures pluriannuelles (+0.93 t C ha-1 an-1) mais n'ont pas variĂ© significativement pour les autres cultures. Le 15N retrouvĂ© dans la biomasse rĂ©coltĂ©e a Ă©tĂ© plus faible pour les cultures pĂ©rennes, particuliĂšrement lorsqu’elles sont rĂ©coltĂ©es tardivement, mais cela est compensĂ© par une plus forte proportion de 15N dans leurs organes souterrains et dans le sol. Le 15N retrouvĂ© dans le systĂšme sol-plante a Ă©tĂ© de 69% de l’azote apportĂ© pour les cultures pĂ©rennes, 61% pour les cultures pluriannuelles et 56% pour les cultures annuelles, ce qui suggĂšre que des pertes importantes ont eu lieu par volatilisation et dĂ©nitrification. Dans nos conditions pĂ©doclimatiques, les cultures pĂ©rennes en C4 sont les plus intĂ©ressantes pour concilier forte production de biomasse, forte efficience d’utilisation de l’eau et de l’azote et faibles pertes d’azote vers l’hydrosphĂšre et l’atmosphĂšre. En revanche, seules les cultures pluriannuelles permettent de stocker du carbone Ă  court terme.Second generation biofuels could provide renewable energy to the transportation sector while mitigating climate change. However, their greenhouse gas, energy and environmental balances will probably depend on the feedstock used for their production. Bioenergy crops that could be used for second generation biofuels will have to fulfil several requirements, including high productivity, low input requirements, and low environmental impacts. The objective of this work was to assess the water, N and C balances at the plot scale for various bioenergy crops with different management. The study is based on a long term field experiment, called “Biomass & Environment”, established at the INRA experimental station in EstrĂ©es-Mons, northern France. This experiment includes two perennial C4 crops (Miscanthus × giganteus and switchgrass), two semi-perennial forage C3 crops (fescue and alfalfa) and two annual C4/C3 crops (fibre sorghum and triticale). It compares two nitrogen treatments and two dates of harvest of perennial crops: early (October) or late harvest (February). Measurements have been carried out on: i) biomass production; ii) soil water stocks, monitored continuously during 7 years; iii) root depth and density; iv) drainage and nitrate concentration in drained water, assessed from soil water and mineral N content measurements (in mid-autumn and late winter) and using the STICS model; v) soil organic carbon (SOC) stocks in 2006 and 2011-2012; vi) the fate of 15N-labelled fertiliser applied during 4 or 5 successive years.Thanks to their deep rooting system, perennial and semi-perennial crops consumed more water than annual crops. The amount of drained water was lower under semi-perennial than annual crops (64 vs. 133 mm yr-1 average over 7 years), despite an equivalent biomass production. It was intermediate under perennial crops (56-137 mm yr-1) and negatively correlated to biomass production, itself depending on crop species and N rate. Nitrate concentration in drained water varied between 2 and 23 mg l-1. It was generally lower under perennial than other crops, except for miscanthus on the first year of measurement. SOC stocks increased markedly over time under semi-perennial crops (+0.93 t C ha-1 yr-1), whereas no significant change occurred under perennial and annual crops. The 15N recovery in the harvested biomass was lower for perennial than other crops, particularly when harvested late, but compensated by a higher 15N recovery in belowground organs and soil. The overall 15N recovery in the soil-plant system was 69% in perennials, 61% in semi-perennials and 56% in annual crops, suggesting that important fertiliser losses occurred through volatilisation and denitrification. In our pedo-climatic conditions, the C4 perennial crops performed best in terms of production, water and nitrogen use efficiency, and nitrogen losses towards the groundwater and the atmosphere. However, only semi-perennial crops yielded in SOC sequestration
    • 

    corecore