10 research outputs found

    Modeling macroalgal forest distribution at Mediterranean scale : present status, drivers of changes and insights for conservation and management

    Get PDF
    Macroalgal forests are one of the most productive and valuable marine ecosystems, but yet strongly exposed to fragmentation and loss. Detailed large-scale information on their distribution is largely lacking, hindering conservation initiatives. In this study, a systematic effort to combine spatial data on Cystoseira C. Agardh canopies (Fucales, Phaeophyta) was carried out to develop a Habitat Suitability Model (HSM) at Mediterranean scale, providing critical tools to improve site prioritization for their management, restoration and protection. A georeferenced database on the occurrence of 20 Cystoseira species was produced collecting all the available information from published and grey literature, web data portals and co-authors personal data. Data were associated to 55 predictor variable layers in the (ASCII) raster format and were used in order to develop the HSM by means of a Random Forest, a very effective Machine Learning technique. Knowledge about the distribution of Cystoseira canopies was available for about the 14% of the Mediterranean coastline. Absence data were available only for the 2% of the basin. Despite these gaps, our HSM showed high accuracy levels in reproducing Cystoseira distribution so that the first continuous maps of the habitat across the entire basin was produced. Misclassification errors mainly occurred in the eastern and southern part of the basin, where large gaps of knowledge emerged. The most relevant drivers were the geomorphological ones, followed by anthropogenic variables proxies of pollution and urbanization. Our model shows the importance of data sharing to combine a large number of spatial and environmental data, allowing to individuate areas with high probability of Cystoseira occurrence as suitable for its presence. This approach encourages the use of this modeling tool for the prediction of Cystoseira distribution and for supporting and planning conservation and management initiatives. The step forward is to refine the spatial information of presence-absence data about Cystoseira canopies and of environmental predictors in order to address species-specific assessments.peer-reviewe

    A decision-support framework for the restoration of Cystoseira sensu lato forests

    Get PDF
    Macroalgal forests characterised by species of the genus Cystoseira sensu lato form important shallow coastal rocky habitats in the Mediterranean Sea. These forests support a high biodiversity and provide important ecosystem services and societal benefits. Currently these habitats are often in a poor condition in many areas, due to loss and degradation from both anthropogenic and climate stressors. Restoration has recently moved to the forefront of the United Nations and European Union agendas to reverse this trend, particularly in the last decade with the implementation of various international policies. However, this has been in the form of generic targets (e.g., restoration of 30% of degraded habitats by 2030) and has not been linked to specifically what habitat or species to restore, where and how. Initial targets have been missed, new targets are expected through the proposed EU Nature Restoration Law, but overall guidance is still lacking. There are few specific guides to marine habitat restoration limited to mostly seagrass, corals and shellfish. As a priority action for the recovery of coastal marine ecosystems a decision-support framework has been developed for the restoration of Mediterranean macroalgal forests, comprising a stepwise decision tree with additional descriptions of key elements to be considered for a restoration action. The decision tree includes steps concerning current and historical forest presence, site local condition assessment and choice of actions. Key considerations include restoration implementation (competence, society and support, finance and governance), success evaluation (at the target species and the ecosystem level) and long-term management. The framework builds on existing work on Cystoseira s.l. restoration, the work carried out in the EU AFRIMED project, but also on principles and guidelines in place for both generic and specific marine habitats. The work reported here has involved the expertise of scientists and information from stakeholders. Gaps were identified and recommendations were made, dealing with stressors, coordinating and networking stakeholders, integrating top down policy and bottom up initiatives, funding of restoration actions, establishing synergies between restoration, conservation and marine spatial planning and finally communication and publicity

    Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea

    Get PDF
    Este artículo contiene 14 páginas, 8 figuras, 3 tablas.Algal habitat-forming forests composed of fucalean brown seaweeds (Cystoseira, Ericaria, and Gongolaria) have severely declined along the Mediterranean coasts, endangering the maintenance of essential ecosystem services. Numerous factors determine the loss of these assemblages and operate at different spatial scales, which must be identified to plan conservation and restoration actions. To explore the critical stressors (natural and anthropogenic) that may cause habitat degradation, we investigated (a) the patterns of variability of fucalean forests in percentage cover (abundance) at three spatial scales (location, forest, transect) by visual estimates and or photographic sampling to identify relevant spatial scales of variation, (b) the correlation between semi-quantitative anthropogenic stressors, individually or cumulatively (MA-LUSI index), including natural stressors (confinement, sea urchin grazing), and percentage cover of functional groups (perennial, semi-perennial) at forest spatial scale. The results showed that impacts from mariculture and urbanization seem to be the main stressors affecting habitat-forming species. In particular, while mariculture, urbanization, and cumulative anthropogenic stress negatively correlated with the percentage cover of perennial fucalean species, the same stressors were positively correlated with the percentage cover of the semi-perennial Cystoseira compressa and C. compressa subsp. pustulata. Our results indicate that human impacts can determine spatial patterns in these fragmented and heterogeneous marine habitats, thus stressing the need of carefully considering scale-dependent ecological processes to support conservation and restoration.This study was supported by the European Union’s EASME (Executive Agency for Small and Medium Enterprise) and EMFF (European Maritime and Fisheries fund) as part of the project AFRIMED, “Algal Forest Restoration in the Mediterranean Sea” (under grant agreement no. 789059), http:// afrimed-project.eu/.Peer reviewe

    The challenge of setting restoration targets for macroalgal forests under climate changes

    Get PDF
    Este artículo contiene 10 páginas, 5 figuras, 1 tabla.The process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests. The loss of this habitat has been largely documented, with limited evidences of natural recovery. Spatial priorities were identified under six planning scenarios, considering three main restoration targets to reflect the objectives of the EU Biodiversity Strategy for 2030. Results show that the number of suitable sites for restoration is very limited at basin scale, and targets are only achieved when the recovery of 10% of regressing and extinct macroalgal forests is planned. Increasing targets translates into including unsuitable areas for restoration in Marxan solutions, amplifying the risk of ineffective interventions. Our analysis supports macroalgal forests restoration and provides guiding principles and criteria to strengthen the effectiveness of restoration actions across habitats. The constraints in finding suitable areas for restoration are discussed, and recommendations to guide planning to support future restoration interventions are also included.This study was funded by the EASME–EMFF (Sustainable Blue Economy) Project AFRIMED (http://afrimed-project.eu/, grant agreement N. 789059), supported by the European Community.Peer reviewe

    An integrated assessment of the Good Environmental Status of Mediterranean Marine Protected Areas

    Get PDF
    Este artículo contiene 11 páginas, 2 figuras, 2 tablas.Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.This article was undertaken within the COST Action 15121 MarCons (http://www.marcons-cost.eu, European Cooperation in Science and Technology), the Interreg MED AMAre Plus (Ref: 8022) and the project PO FEAMP 2014-2020 Innovazione, sviluppo e sostenibilita ` nel settore della pesca e dell’acquacoltura per la Regione Campania (ISSPA 2.51). M.C.U., A.B. have been funded by the project MEDREGION (European Commission DG ENV/MSFD, 2018 call, Grant Agreement 110661/ 2018/794286/SUB/ENV.C2). Aegean Sea data were retrieved from the project PROTOMEDEA (www.protomedea.eu), funded by DG for Marine Affairs and Fisheries of the EC, under Grant Agreement SI2.721917. JB acknowledges support from the Spanish Ministry of Science and Innovation (Juan de la Cierva fellowship FJC 2018-035566-I).With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).Peer reviewe

    Thanks mum. Maternal effects in response to ocean acidification of sea urchin larvae at different ecologically relevant temperatures

    No full text
    International audienceJuvenile stages of marine species might be more vulnerable than adults to climate change, however larval vulnerability to predictable environmental changes can be mitigated by parental anticipatory buffer effects occurring during gametogenesis. In this study, ocean acidification effect were investigated on larval growth of two sea urchins, Arbacia lixula and Paracentrotus lividus, at different temperature levels. Results showed that altered pH and temperature affected larval development in both species, with significant length reductions of spicules and significant increases in abnormal larvae. Detrimental effects of reduced pH and high temperature were however dependent on the mother. Furthermore, the responses of A. lixula larvae from the ambient site (pH ∼ 8.0) were compared with those of larvae obtained from mothers collected from a natural CO2 vent (pH ∼ 7.7) in Ischia. Comparisons highlighted a transgenerational response, as the CO2 vent larvae proved to be more resilient to reduced pH, although more sensitive to increased temperature

    Assessing the potential of Other Effective area-based Conservation Measures (OECMs) for contributing to conservation targets: A global scoping review protocol [version 1; peer review: 1 approved, 2 approved with reservations]

    No full text
    This scoping review (ScR) protocol aims to establish the methodological approach for identifying and mapping the evidence regarding the actual contribution of Other Effective area-based Conservation Measures (OECMs) to spatial conservation targets. Emphasis will be placed on examining the research conducted, including the methodologies applied, and analyzing both good practices and acknowledged failures. OECMs, introduced by the Convention on Biological Diversity (CBD) in 2010, refer to areas outside of protected areas, such as fisheries restricted areas, archaeological sites, and military areas, that effectively conserve biodiversity in-situ over the long term. OECMs are recognized rather than designated. Many countries currently endeavor to identify, recognize and report OECMs to the CBD for formal acceptance to support the implementation of spatial conservation targets. Studies that assess the contribution of OECMs to spatial conservation targets will be considered. Potential OECMs with primary, secondary or ancillary conservation objectives established by all sectors in the terrestrial, freshwater and marine realm worldwide will be considered. Peer-reviewed and grey literature will be considered without imposing limitations based on publication year, stage, subject area and source type. Both experimental and observational studies in English, French, Greek, Italian, and Spanish will be reviewed. The ScR will follow the Joanna Briggs Institute (JBI) methodology. The protocol will be guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extension for scoping reviews. The search will encompass bibliographic databases such as Scopus, Web of Science and Google Scholar. Grey literature sources will include databases, pre-print archives and organizational websites. The Covidence platform will be utilized for data management and extraction

    Current practices in marine systematic conservation planning: protocol for a global scoping review

    No full text
    Background: Systematic Conservation Planning (SCP) involves a series of steps to identify conservation areas and develop management strategies, incorporating feedbacks, revisions, and iterations at any stage. It is a valuable tool in facilitating the effective implementation of Ecosystem-Based Marine Spatial Planning (EB-MSP). However, few efforts have been carried out to summarize information on methods, trends, and progress in SCP in the designation of Marine Protected Areas (MPAs). The present work aims at providing the protocol to perform a scoping review (ScR) to assess the contribution of SCP to the design of effective MPA networks, identifying both the development of good practices and the presence of gaps of knowledge in terms of criteria for their implementation.Protocol: The ScR will follow the Joanna Briggs Institute (JBI) methodology. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for ScRs supported the definition of this protocol. The three databases Web of Science, Scopus, and Google Scholar will be used for the bibliographic search. Inclusion criteria will be as follows: studies applying SCP in the marine realms worldwide, assessing its contribution to the design of MPA networks. Both peer-reviewed and grey literature will be considered for eligibility. No search limitations will be applied regarding publications’ year, stage, subject area and source type. Studies in English, French, German, Greek, Italian, and Spanish will be reviewed. Grey literature will be sourced from pre-print archives, institutional websites and other web-based search engines. The Covidence software will be used for the process of documents selection and data extraction. The findings of the ScR will be presented through tables, graphs, and maps, accompanied by a narrative summary of the outcomes.Conclusions: This comprehensive approach will provide a visual representation of the data, enhancing the understanding and interpretation of the results

    Distribution, health and threats to Mediterranean macroalgal forests: defining the baselines for their conservation and restoration

    No full text
    International audienceThe worldwide decline of macroalgal forests is raising major concerns for the potentially negative consequences on biodiversity and ecosystem functions, pushing for the definition of specific conservation and restoration measures. Protecting and restoring these habitats requires detailed information on their distribution, ecological status, and drivers of decline. Here, we provide the most updated available information on the distribution of Mediterranean Cystoseira s.l. forests by conducting a comprehensive bibliographic survey of literature published from 2009 to 2021, complemented by unpublished data. We also provide insights into the ecological status of these forests and the stressors affecting them across the Mediterranean basin. Our results show that most Mediterranean coasts remain un(der)studied and that the available information is concentrated in spatially limited coastal areas, restricted to very few species. When the ecological status is reported, data is highly heterogeneous, making any comparisons problematic, what claims for the description and use of easy and standardized monitoring methods for comparative purposes. Drivers of decline of Cystoseira s.l. forest have been even less investigated and, therefore, still poorly characterized. Our results highlight that our current knowledge is still insufficient to implement effective conservation and restoration strategies at the basin scale but also regionally. We call for the urgent need for mapping and standardized monitoring of Cystoseira s.l. forests to obtain baseline information for future management strategies involving their conservation, the mitigation of the stressors threatening them and the restoration of the degraded forests

    Impact of sea level rise on the Mediterranean Lithophyllum byssoides rims

    No full text
    International audienceAbstract The calcified red macroalga Lithophyllum byssoides , a very common midlittoral species in the western Mediterranean Sea, is a significant ecosystem engineer capable, under exposed and dim light conditions, of building wide and solid endemic bioconstructions near the mean sea level: the L. byssoides rims or ' trottoirs à L. byssoides' . Although the growth of the species is relatively rapid for a calcified alga, the construction of a large rim requires several centuries of near stable or slowly rising sea level. As the time scale of their formation is measured in centuries, L. byssoides bioconstructions constitute valuable and sensitive sea level markers. The health status of L. byssoides rims has been studied at two sites located far apart from each other (Marseille and Corsica), both in areas heavily impacted by humans and in areas with little impact (MPAs and unprotected areas). A health index is proposed: Lithophylum byssoides Rims Health Index. The main and inevitable threat is the rise in the sea level. This ecosystem would be the first case worldwide of marine ecosystem collapse resulting, indirectly, from man-induced global change
    corecore