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Macroalgal forests are one of the most productive and valuable marine ecosystems, but
yet strongly exposed to fragmentation and loss. Detailed large-scale information on their
distribution is largely lacking, hindering conservation initiatives. In this study, a systematic
effort to combine spatial data on Cystoseira C. Agardh canopies (Fucales, Phaeophyta)
was carried out to develop a Habitat Suitability Model (HSM) at Mediterranean scale,
providing critical tools to improve site prioritization for their management, restoration
and protection. A georeferenced database on the occurrence of 20 Cystoseira species
was produced collecting all the available information from published and grey literature,
web data portals and co-authors personal data. Data were associated to 55 predictor
variable layers in the (ASCII) raster format and were used in order to develop the HSM by
means of a Random Forest, a very effective Machine Learning technique. Knowledge
about the distribution of Cystoseira canopies was available for about the 14% of the
Mediterranean coastline. Absence data were available only for the 2% of the basin.
Despite these gaps, our HSM showed high accuracy levels in reproducing Cystoseira
distribution so that the first continuous maps of the habitat across the entire basin was
produced. Misclassification errors mainly occurred in the eastern and southern part of
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the basin, where large gaps of knowledge emerged. The most relevant drivers were
the geomorphological ones, followed by anthropogenic variables proxies of pollution
and urbanization. Our model shows the importance of data sharing to combine a
large number of spatial and environmental data, allowing to individuate areas with
high probability of Cystoseira occurrence as suitable for its presence. This approach
encourages the use of this modeling tool for the prediction of Cystoseira distribution and
for supporting and planning conservation and management initiatives. The step forward
is to refine the spatial information of presence-absence data about Cystoseira canopies
and of environmental predictors in order to address species-specific assessments.

Keywords: Cystoseira canopies, habitat suitability model, Mediterranean Sea, Random Forest, species
distribution

INTRODUCTION

Increasing human pressures such as coastal development, habitat
destruction, pollution, maritime traffic, fisheries and illegal
fishing together with climate change are strongly affecting the
distribution of marine coastal species and habitats (Claudet and
Fraschetti, 2010; Coll et al., 2010). New and emerging uses of
marine resources (e.g., seabed mining, aquaculture) are also
expected as additional sources of disturbance for marine coastal
ecosystems (Wolff et al., 2018). This changing scenario calls for
science-based information to understand the processes driving
present trajectories of ecological change. In this framework, a
solid knowledge of the distribution of species and their habitats
over large spatial and temporal scales is critical to support all
stages of marine spatial planning, to inform action prioritizations
for scientists and decision-makers and to provide guidance
for sustainable exploitation of marine resources, minimizing
the negative impacts of present and future human activities
(Douvere, 2010; Levin et al., 2014; Martin et al., 2014).

Recently, increasing efforts to carry out systematic collections
of spatial data have been conducted from different areas of the
world with significant progresses for a variety of species and
habitats (Duarte, 2002; Orth et al., 2006; Waycott et al., 2009;
Van Soest et al., 2012; Yesson et al., 2017). In Europe, a network
of organizations is currently working together to integrate and
share information to combine available marine data across EU
countries (European Marine Observation and Data Network,
EMODnet1). In this respect, the Mediterranean Sea should be a
hub of information: it has been intensely studied since the last
century and several initiatives have been carried out to document
and combine the available knowledge about the occurrence
and status of key target species/habitats such as coralligenous
outcrops and maërl beds (Martin et al., 2014), Posidonia oceanica
meadows (Telesca et al., 2015), coral assemblages (e.g., Cladocora
caespitosa) (Chefaoui et al., 2017), sea pens (Bastari et al., 2018),
and gorgonian species (Boavida et al., 2016; Ghanem et al., 2018).
Despite these efforts, Gubbay et al. (2016) document a substantial
lack of quantitative information on definition, distribution and
temporal trends of the status of most of Mediterranean habitats:
data collected has often limited spatial and temporal scope,

1http://www.emodnet.eu/

scattered over different institutions in small datasets for specific
species groups or habitats (Portman et al., 2013), with important
gaps in different levels of information, such as the evaluation of
conservation status (Coll et al., 2012, 2010).

Real data very often do not cover large spatial extensions
so that modeling approaches and extensive extrapolations are
needed to fill gaps in knowledge (Martin et al., 2014). Different
tools have been used to address a deeper understanding of
large-scale distribution of species and to fill gaps in actual
knowledge, in relation to the type and resolution of available
data (presence-only data, presence-absence data and data on
predictive environmental variables) (Guisan and Zimmermann,
2000). Maximum entropy (Maxent algorithm), Random Forest
(RF), generalized linear and additive models (GLMs and GAMs)
are some of the modeling techniques used in these studies to
develop predictive occurrence maps for target species/habitats
(hereafter referred to as Habitat Suitability Models, HSMs).

All these examples, and others not listed here, demonstrate
the wide range of applications for which systematic conservation
planning can be applied at different scales, based on data from
field surveys, expert knowledge and model-based estimations of
species distribution (Guisan and Zimmermann, 2000; Levin et al.,
2014). Despite limitations and associated uncertainties, HSMs
can be a cost-effective approach to integrate real data, as they can
help documenting where sensitive marine species and habitats
are expected to occur (McArthur et al., 2010; Gorman et al.,
2013; Martin et al., 2014), and predicting their possible shifts in
distribution under global climate change (Guisan and Wilfried,
2005; Rodríguez et al., 2007; Martínez et al., 2018).

Macroalgal forests represent a paradigmatic example of key
threatened benthic habitat featured by sparse but increasing
spatial information, deserving further efforts to improve the
management of those pressures determining their increasing loss
across the Mediterranean and elsewhere (Benedetti-Cecchi et al.,
2001). Macroalgal forests are one of the most productive and
valuable, yet undervalued habitats, undergoing dramatic changes
(Mangialajo et al., 2008; Thibaut et al., 2005, 2015; Blanfuné
et al., 2016; Mancuso et al., 2018). Along temperate rocky
coasts worldwide, large canopy-forming algae (Laminariales and
Fucales) were dominant in both intertidal and subtidal habitats,
providing shelter, food and nursery areas to a multitude of marine
communities, increasing three-dimensional complexity and
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spatial heterogeneity of rocky substrates, enhancing biodiversity
and productivity in coastal ecosystems (Ballesteros et al., 1998;
Fowler-Walker and Connell, 2002; Steneck et al., 2002; Cheminée
et al., 2013; Gianni et al., 2013; Gorman et al., 2013; Piazzi et al.,
2018). However, the cumulative impacts of local anthropogenic
pressures combined with other global stressors are driving the
decline of brown algae and their associated communities in
several regions of the world subject to increased human threats
(Airoldi and Beck, 2007; Lamela-Silvarrey et al., 2012; Sala et al.,
2012; Gianni et al., 2013; Strain et al., 2014; Mineur et al., 2015;
Thibaut et al., 2015; Bianchi et al., 2018).

In the Mediterranean Sea, the genus Cystoseira C. Agardh
(Fucales, Phaeophyta) is one of the most representative of the
Sargassaceae family and includes a total of 45 taxa (Guiry
and Guiry, 2010) with habitat-forming species dominating
several assemblages from the very shallow to deep waters
(−50 m) (Feldmann, 1937; Giaccone and Bruni, 1973; Ballesteros
et al., 1998; ESRI, 2012; García-Fernández and Bárbara, 2016).
Reductions in their cover and biomass, prompted by the
integration of multiple natural and artificial effects, promote their
replacement by turf-forming, filamentous or other ephemeral
seaweeds (Murray and Littler, 1978; Benedetti-Cecchi et al., 2001,
2015; Thibaut et al., 2005; Ballesteros et al., 2007; Pinedo et al.,
2007; Airoldi et al., 2008; Connell et al., 2008; Falace et al., 2010;
Perkol-Finkel and Airoldi, 2010; Fraschetti et al., 2011; Giakoumi
et al., 2012). Moreover, macroalgal forests can be overgrazed to
barrens by urchins or fish (Fraschetti et al., 2001; Sala et al., 2011;
Guarnieri et al., 2014; Vergés et al., 2014). Due to their role in
supporting biodiversity and food webs, the loss of these long-lived
brown algae is leading to a decrease in critical ecosystem services
such as fisheries (Thibaut et al., 2015; Buonomo et al., 2018) and
also to a reduction in the potential to sequestrate carbon dioxide
and to mitigate climate change.

There is an increasing attention toward the state of
macroalgal forests from both a conservation (Annex II of the
Barcelona Convention, COM/2009/0585/FIN) and a restoration
point of view (MERCES project, 20162; AFRIMED project,
2018,3), to better understand the potential of reverting present
trajectories of change through active restoration. Furthermore,
Cystoseira assemblages are being considered as habitats of critical
importance for the EU (Directive 92/43/EEC; Annex I, included
in “Rocky reefs”) and as indicators to assess ecological status in
the context of the Water Framework Directive (WFD; Directive
2000/60/EC). Despite the increasing interest, there are still many
information gaps in the spatial distribution of Cystoseira canopies
across the Mediterranean Sea and the drivers involved in the
observed shifts. Understanding causal relationships and filling
these gaps of knowledge is a crucial step to reverse current
patterns of regression.

The aims of this study are (1) to synthesize knowledge about
the distribution of Cystoseira species and (2) to develop a HSM for
Cystoseira species living in the shallow rocky substrates through
the Random Forest technique (RF) (Breiman, 2001), considering

2http://www.merces-project.eu/
3https://ec.europa.eu/easme/en/afrimed-algal-forest-restoration-mediterranean-
sea

areas where both presence and absence data were available at
Mediterranean scale. RF is a Machine Learning technique which,
starting from a set of selected predictor variables and combining
an ensemble of classification trees, is able to identify suitable and
unsuitable areas for holding Cystoseira species. The developed
HSM has been used to identify environmental predictors which
are related to Cystoseira spatial distribution and to predict the
occurrence of Cystoseira canopies at locations where information
was not available. Our model can be regarded as a valuable tool
for the assessment of species distribution on shallow rocky shores
to guide their management, conservation and active restoration.

MATERIALS AND METHODS

Georeferenced Data for Cystoseira
Species
A systematic review was conducted consisting of three steps: (1)
articles identification using two databases [ISI Web of Science
(WOS) and Scopus] searched for the 1985–2018 time frame
(cut-off date 31 March 2018), (2) abstract screening, and (3)
review of pertinent articles. The aim of this activity was to
collect all the information about the georeferenced occurrence
of the genus Cystoseira at Mediterranean scale. The systematic
literature screening was carried out by searching in the “Title,”
“Abstract,” and “Keyword” fields using Web of Science Core
Collection. The following combination of terms was included in
the search: (“Cystoseira” OR “Cystoseira canopies” OR “Fucales”
OR “brown algae” OR “macroalgal forest∗” OR “habitat form∗”)
AND (“distribution” OR “occurrence” OR “shift” OR “habitat
loss” OR “decline”) AND “Mediterranean Sea.” We also searched
the citation lists of selected articles, using the same search terms.
Supplementary Figures S1, S2 show respectively the number of
publications per year and the number of publications per country
obtained from the literature screening. Unpublished information,
gray literature and maps have been also searched and cataloged
(Supplementary Table S1).

The georeferenced database with the spatial distribution
of Cystoseira across the Mediterranean Sea, initially produced
in the framework of the FP7 EU project CoCoNet (FP7,
Grant agreement no: 287844), was also used. In addition, co-
authors of this manuscript personally contributed with their data
(Supplementary Table S2). New data were also acquired from
the monitoring program CARLIT (CARtography of LITtoral
and upper-sublittoral benthic communities) (Ballesteros et al.,
2007). The EMODnet biology data portal (Guardia, 20184) which
contains a dataset on the distribution of Cystoseira across the
Mediterranean Sea, the Black Sea and the Eastern Atlantic
Ocean was also used.

Most collected data were only available in.jpeg or.pdf
format, or only as a description in a text. Therefore, this
information was digitized as shapefile points or polylines
in order to be associated with a map, using the Open
Source QGIS software (QGIS Development Team, 2018. QGIS
Geographic Information System. O3.Open Source Geospatial

4http://www.emodnet-biology.eu
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Foundation5). The two resulting vector shapefiles of points and
polylines showed the georeferenced distribution of Cystoseira
species along Mediterranean coasts. Each data entry was
accompanied by the geographic coordinates, data origins and
data providers, sampling method, date and depth, publication
date and which species of the genus were sampled, when this
information was available.

Absence records, which were only available for a limited
number of locations, were assembled in a line shapefile mainly
generated from maps found in the collected articles, but also
from expert opinion.

In order to develop a HSM for Cystoseira canopies across
the Mediterranean Sea, we firstly extracted from the whole
dataset only those records documenting the presence of
species in the shallow rocky substrates, excluding those
corresponding to species that are only found at deeper
stands: C. algeriensis Feldmann, C. corniculata (Turner)
Zanardini, C. crinitophylla Ercegovic, C. dubia Valiante,
C. montagnei J. Agardh, C. sauvageauana Hamel, C. schiffneri
Hamel, C. sedoides (Desfontaines) C. Agardh, C. squarrosa De
Notaris, C. tamariscifolia (Hudson) Papenfuss, C. zosteroides
(Turner) C. Agardh. Occurrence data of C. amentacea (C.
Agardh) Bory, C. barbata (Stackhouse) C. Agardh, C. brachycarpa
J. Agardh, C. compressa (Esper) Gerloff & Nizamuddin, C. crinita
Duby, C. elegans Sauvageau, C. foeniculacea (Linnaeus)
Greville, C. humilis Schousboe ex Kützing and C. mediterranea
Sauvageau were included in the model subset, together with
all records collected as Cystoseira spp. produced by sampling
surveys in which the CARLIT method was applied, since it
is focused on the identification of shallow rocky substrates
(Ballesteros et al., 2007).

These data, combined with the available absence records, were
assembled in a single vector shapefile. Then the vector layer
was converted to the (ASCII) raster format, using the same
procedure, grid resolution, geographical extent and coordinate
system as the layers of the predictor variables which were
selected as input to the model (see next section). The resulting
Cystoseira raster layer was featured by values covering the entire
Mediterranean coastline and was composed of three types of
pixels: “absence” pixels (coded as 1), “presence” pixels (coded
as 2) and “no-data” pixels (coded as 3), with the last one
corresponding to all the sections of Mediterranean shoreline
where no information was available.

Modeling Cystoseira Occurrence:
Selection of Predictor Variables
A set of 55 predictor variables was associated with the dataset
with the occurrence of the Cystoseira spp. as input to the
modeling procedure. Most of these predictor variables derived
from Halpern et al. (2008) and Wolff et al. (2018). Some
have been obtained from data geoportals, e.g., the Copernicus
Marine Environment Monitoring Service6, and others were
instead based on GIS calculations (the complete list of predictor
variables, together with their sources, is shown in the Table 1).

5https://www.qgis.org/it/site/
6http://marine.copernicus.eu

Predictor layers were selected on the basis of the coverage of
the information they provided. We only used variables with
data coverage over the entire Mediterranean basin and with the
highest available resolution. Following this criterion, we collected
values for environmental variables (e.g., wind stress and the waves
energy along the coastline) and anthropogenic variables (e.g.,
pollution, population density and shipping intensity). All the
55 selected layers were converted to a common raster format,
having as geographical extent the Mediterranean Sea, in WGS
84 coordinate system and with a resolution of 0.004166 decimal
degrees (i.e., each pixel was about 460 m along the latitudinal
axis, and from about 330 m to 380 m along the longitudinal one,
depending on latitude). The rasterization process was carried out
using the package “raster” (Hijmans, 2017. R package version
2.6–77) in the R open source data analysis software (R Core Team,
20168). The same raster format was applied to Cystoseira spp.
occurrence data to ensure the appropriate matching with the
predictor layers.

Furthermore, since most layers coming from the above sources
did not provide data for the shoreline, where Cystoseira species
potentially occur, we developed a procedure to estimate the value
of the pixels of the shoreline. We considered the value of the
first non-empty pixel of the layer for qualitative predictors and
the mean value of neighbor pixels for quantitative predictors,
within a search radius of 10 pixels at most. In particular,
the mean value was obtained on the Moore neighborhood or,
otherwise, on the smallest frame with at least a non-empty pixel.
Thereby, all the predictor variables provided data for each pixel
over the Mediterranean shoreline where Cystoseira records were
distributed (presence, absence, and no-data).

Modeling Approach
From the Cystoseira raster layer we extracted a subset including
only regions where both presence and absence data were
available. Hence, the distribution of Cystoseira canopies across
the Mediterranean Sea was modeled focusing on a dataset
composed by 8,143 pixels: 5,475 “presence” pixels and 2,668
“absence” pixels. The Machine Learning (ML) method selected
to model the distribution of Cystoseira canopies was the RF
(Breiman, 2001). This technique, based on a set of classification
trees, needs two subsets of data: a training set to tune the model
and a test set to validate model performances. We split our
dataset in a training and a test set (with the 20% of the dataset
assigned to the test set and the remaining 80% to the training
set) following the next steps: at first, we superimposed a grid of
0.50 decimal degrees square cells to the whole Mediterranean
basin. Then, we randomly assigned cells to the test set excluding
those containing less than 100 records (i.e., 100 pixels of the
Cystoseira raster layer). This number corresponded to the first
quartile of the distribution of records among all the cells.
Only cells where the presence/absence records were not too
unbalanced (no more than 80% of presence records) were
selected in order to better reflect the overall characteristics of
the dataset. Moreover, care was taken to avoid geographical

7https://CRAN.R-project.org/package=raster
8https://www.R-project.org/
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TABLE 1 | Predictor variables used for the HSM with their units, source and the abbreviated name.

Name Source Abbreviated
name

1 Artisanal fishing Halpern et al., 2008 artfish

2 Aspect of the seafloor GIS calculation based on variable 3 (bathymetry) gebasp

3 Bathymetry EMODNet Hydrography Portal, 2013 gebmed

4 Bottom salinity Boyer et al., 2005 botsalin

5 Bottom temperature Boyer et al., 2005 bottemp

6 Bottom type Halpern et al., 2008 bottype

7 Calcite concentration Tyberghein et al., 2012, based on Feldman and McClain, 2010 calcite

8 Chlorophyll a concentration (mean) Tyberghein et al., 2012, based on Feldman and McClain, 2010 chmean

9 Chlorophyll a concentration (annual range) Tyberghein et al., 2012, based on Feldman and McClain, 2010 chrange

10 Climate change (sea surface temperature) Halpern et al., 2008, based on Casey et al., 2010 climsst

11 Climate change (UV) Halpern et al., 2008, based on McPeters et al., 1998 climuv

12 Diffuse attenuation coefficient Tyberghein et al., 2012, based on Feldman and McClain, 2010 dacmean

13 Dissolved oxygen concentration Tyberghein et al., 2012, based on Boyer et al., 2009 dissox

14 Distance to 200 m isobath GIS calculation based on variable 3 (bathymetry) dist200 m

15 Distance to coast GIS calculation based on Wessel and Smith, 1996 distcoast

16 Distance to ports GIS calculation based on NG-IA, 2011 distport

17 Distance to river mouths GIS calculation based on ESRI, 2012, and Wessel and Smith, 1996 disriver

18 Euphotic depth Feldman and McClain, 2010 zeumean

19 Human impact to marine ecosystems Halpern et al., 2008 impact

20 Nitrate concentration Tyberghein et al., 2012, based on Boyer et al., 2009 nitrate

21 Nutrient input (fertilizers) Halpern et al., 2008 nutrient

22 Ocean acidification Halpern et al., 2008 oceacidif

23 pH Tyberghein et al., 2012, based on Boyer et al., 2009 ph

24 Photosynthetically available radiation Tyberghein et al., 2012, based on Feldman and McClain, 2010 parmean

25 Phosphate concentration Tyberghein et al., 2012, based on Boyer et al., 2009 phosphate

26 Pollutants (inorganic) Halpern et al., 2008 inorpol

27 Pollutants (organic) Halpern et al., 2008 orgpol

28 Pollution (ocean-based) Halpern et al., 2008 pollution

29 Population pressure Halpern et al., 2008 popress

30 Salinity Tyberghein et al., 2012, based on Boyer et al., 2009 salinity

31 Topographic coastal slope (in degrees, 30 arc-seconds
resolution)

GEBCO cst

32 Sea surface temperature (mean) Tyberghein et al., 2012, based on Feldman and McClain, 2010 Sstmean

33 Sea surface temperature (annual range) Tyberghein et al., 2012, based on Feldman and McClain, 2010 sstrange

34 Shipping intensity Halpern et al., 2008 shipping

35 Silicate concentration Tyberghein et al., 2012, based on Boyer et al., 2009 silicate

36 Slope of the seafloor GIS calculation based on variable 3 (bathymetry) gebslo

37 Urban area Google Earth imagery and location-tagged photographs from the
web-service Panoramio; MODIS 500-m global map of urban extent
dataset

urban

38 Coast material classes Google Earth imagery and location-tagged photographs from the
web-service Panoramio

coast_material

39 Mean wave height (in cm) Dataset produced as part of the RISES-AM projected by CMCC
(Euro-Mediterranean Center on Climate Change)

waves

40 Max High Water (in m) Pickering, 2014 Tide_maxHW

41 High Water (in m) Pickering, 2014 Tide_MHW

42 Minimum Low Water (in m) Pickering, 2014 Tide_minLW

43 Low Water (in m) Pickering, 2014 Tide_MLW

44 Mean Tidal Range (in m) Pickering, 2014 Tide_MTR

45 Saltmarshes (in m) UNEP-WCMC saltmarshes

46 Tourist arrival for 2014 World Bank tour_arr

47 Height above mean sea level in 10 years (in m) GTSR dataset GTSR_10

48 Height above mean sea level in 100 years (in m) GTSR dataset GTSR_100

(Continued)
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TABLE 1 | Continued

Name Source Abbreviated
name

49 River Derived from google earth river

50 Forest area (in km2) European Space Agency and Université Catholique De Louvain
(UCL). Global Land Cover Map for 2009

forestarea

51 Arable area (in km2) European Space Agency and Université Catholique De Louvain
(UCL). Global Land Cover Map for 2009

ArableArea

52 Open space (in km2) European Space Agency and Université Catholique De Louvain
(UCL). Global Land Cover Map for 2009

openarea

53 Urban area (in km2) European Space Agency and Université Catholique De Louvain
(UCL). Global Land Cover Map for 2009

urbanarea

54 Vertical Land Movement (in mm/yr) Peltier et al., 2014 VerticalMovement

55 Max stress of wind from 2008 to 2017 (in Pa) Copernicus Marine Environment Monitoring Service maxWind

All the selected layers were converted to a common raster format, having as geographical extent the Mediterranean Sea, in WGS 84 coordinate system and with a
resolution of 0.004166 decimal degrees (i.e., about 460 m along the latitudinal axis, and from about 330 to 380 m along the longitudinal one).

segregation in assigning cells, so as to be representative, as much
as possible, of multiple environmental conditions occurring
across Mediterranean regions. This procedure minimized the
influence of spatial autocorrelation in the test procedure, as only
at the boundaries of the test set cells a negligible number of pixels
closely resembling those in the training set cells could be found.

The RF predicted the class (i.e., presence or absence) of each
record in the training and the test set taking the majority voting
(the 50%, at least) of the overall trees which composed the forest.
We trained several RFs through a Fortran 90 program obtained
from the original Fortran 77 source code by Leo Breiman and
Adele Cutler9. The only changes to the original code were in
the input of training parameters from file and in the dynamic
allocation of the arrays, while the algorithm and the output file
format were not modified.

RFs, by combining multiple classification trees in a single
output, require the tuning of different parameters which affect the
forest growth with repercussions on model accuracy: the number
of trees in the forest and the number of cases in the terminal
leaves of the trees, which have to be tuned in order to minimize
the generalization error and to avoid overfitting; the number
of predictor variables randomly selected at each split, which,
remaining constant during the forest growth, shows large effects
on the strength of each individual tree and on the correlation
between any pair of them (Breiman, 2001). RFs were grown using
250 and 500 trees in the forest, a number of predictor variables
per split at each node of the trees ranging between 4 and 14 and
six different number of cases in the terminal leaves of the forests
(1, 10, 25, 50, 100, and 150).

Since our dataset was unbalanced in the number of presence
and absence records, the cut-off value (t = 0.50) was optimized
by analyzing the Receiver Operating Characteristic (ROC)
curve (Zweig and Campbell, 1993), in order to find the best
compromise between the predictions of true and false positives,
i.e., between sensitivity and specificity of the model. Then, we
calculated the Kappa statistics (Cohen, 1960) to identify the best
model among those we trained, considering also the Area Under

9https://www.stat.berkeley.edu/~breiman/RandomForests/cc_software.htm

the ROC curve (AUC) as a measure of the overall accuracy of
the models. Furthermore, measuring the Kappa statistics over
the test set (built to be as independent as possible from the
training set) implies evaluating the model robustness just as a
null model does with parametric modeling approaches. Indeed,
this coefficient measures the agreement among raters (or between
model output and observed data) by assessing the deviation from
random agreement (McHugh, 2012). Kappa statistics and ROC
curve were calculated using the “caret” package (Kuhn, 2017.
R package version 6.0–7810) and “pROC” package (Robin et al.,
2011. BMC Bioinformatics, 12, p. 77. doi: 10.1186/1471-2105-12-
7711) in the R environment.

The importance of predictor variables was assessed by
comparing the permutation importance measure (or the Mean
Decrease Accuracy, MDA) (Breiman, 2001) with the Gini
importance measure (or the Mean Decrease Impurity, MDI)
(Breiman, 2003), both calculated at the end of the training phase.
In the first instance, cases out of the bootstrap samples used
in the training phase of the RF (OOB records), are randomly
permuted in the values of predictor variables. The difference
between the misclassification rate of original and permuted OOB
values, divided by the standard error, is used as a measure of
the importance of predictor variables, as the increase in this
difference is proportional to variable importance. In the second
case, every time a node is split according to a predictor variable,
the Gini Importance for the two descendent nodes is less than
the one for the parent nodes. An alternate measure of variable
importance is so provided by the total decrease in node impurity
for each variable averaged overall the trees in the RF. In any case,
the two measures of variable importance were often consistent
with each other.

We also validated the performance of the selected model by
getting the predictions for regions where only presence records
were available, i.e., records that were not used either in the
training or in the test set for the RF. The performance of the

10https://CRAN.R-project.org/package=caret
11http://www.biomedcentral.com/1471-2105/12/77/
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models on these records was evaluated by looking at the total
number of trees in the forest that voted for presence.

At the end, the model was used as a tool to predicting presence
and absence of Cystoseira species for areas where no information
was available (i.e., no-data records). In the Supplementary
Figure S3, a flow diagram illustrating the main steps from
data access to HSM and the analysis of the variables relative
importance is presented.

RESULTS

Distribution and Coverage of Cystoseira
Species Across the Mediterranean Sea
The currently known distribution, obtained by combining line
(presence: 12,968; absence: 564) and point (presence: 19,782)
records, is shown in Figure 1, depicting areas where Cystoseira
canopies are known to be either present or absent. Spatial
coverage is geographically biased since most data derived from
a specific monitoring activity within the EU Water Framework
Directive on macroalgae (CARLIT index), carried out only on
the western Mediterranean Sea. Types and number of collected
records are specified for each of the 22 Mediterranean countries
in the Supplementary Table S3. The table shows for which
countries occurrence data were available and where information
was reported at species level. In addition, both the presence
and the absence shapefiles are available on request to the
corresponding author, allowing the examination of finer details
which were hard to represent in the map shown in Figure 1,
aimed at giving an overview of the collected dataset.

Presence data, from both line and point records, covered 15
out of 22 Mediterranean countries. For only four out of these
22 countries absence data were also available (Albania, France,
Italy, and Spain). Cystoseira canopies were found to be present
along the Mediterranean coastline for 6,342.41 km out of a total
coastal length of 46,000 km. Cystoseira absence, expressed as
line records only, accounted for 1,328.27 km. No presence or
absence data were available along the rest of the coasts of the
basin. Obviously, the linear length estimates were only based
on line records.

An exhaustive list of all the Cystoseira species included in
the dataset, with their respective number of occurrences, is
also provided in the Supplementary Table S4. The species
with the highest number of available records are C. amentacea,
C. mediterranea, and C. compressa which represent about the
40% of the dataset collectively, considering both point and
line records. This information is mostly available for shallow
rocky infralittoral habitat, where a lot of ecological studies and
systematic monitoring have been conducted, depicting in this
way a biased scenario of the presence of Cystoseira at basin scale.
In addition, most studies did not provide information at species
level and a total of 18,742 records were mapped at genus level as
Cystoseira spp.

The Cystoseira raster layer, produced in order to develop the
HSM for Cystoseira canopies based on a RF and obtained from
the rasterization of the infralittoral species subset, was composed
of 113,021 pixels stretched over all the Mediterranean coastline.

Of these, 100,609 were coded as “no-data” pixels, 9,744 were
“presence” pixels and the remaining 2,688 were “absence” pixels.
The subset mainly included records of canopy-forming species
(90% of all records) but also records of species which may not be
“forest”-forming (e.g., C. compressa).

Habitat Suitability Model for Cystoseira
Canopies
To develop the HSM for Cystoseira canopies we used only data
from areas where both presence and absence information were
available. These areas included the Karaburun Peninsula and
Sazani Island in Albania, Apulia and Sicily regions in Italy,
Corsica and the southern coast of France, the eastern coast
of the Iberian Peninsula with the Balearic archipelago in the
western Mediterranean Sea. Figure 2 shows the aforementioned
areas and, for reason of scaling, we illustrated the amount of
the available data with the presence/absence ratio using cells of
different dimensions and colors. Practically, from the “Cystoseira”
raster layer we extracted a subset of data composed by 8,143
pixels: 5,475 “presence” pixels and 2,668 “absence” pixels. Then,
we split this dataset in two further subsets, the training set and the
test set, needed, respectively, to train and validate the RF model.
The training set was composed of 6,531 records, of which 4,402
were reported as presence and 2,129 as absence. The remaining
1,612 records, divided into 9 separated Mediterranean areas, were
assigned to the test set. Of these records, 1,073 were reported as
presence and 539 as absence.

The modeling process was trained with all the 55 predictor
variable layers (Table 1), associated with presence/absence data,
since a RF is able to select the most relevant predictor variables
out of the whole set of those available. Moreover, its efficiency is
not impaired by correlations between variables as the best split
at the nodes of each tree is selected from a random subset of
them. This property is one of the strengths of the RF technique,
which selects only relevant variables even in presence of non-
informative ones (Ishwaran, 2007; Louppe et al., 2013; Catucci
and Scardi, 2020), thus becoming insensitive to the collinearity
issues that might hinder other modeling methods.

A total of 132 RFs, tuned with different combination of
parameters, was trained. Model elected as the best was obtained
from the following combination of parameters: 500 trees in the
forest, 25 cases in the terminal leaves of the forest and 9 predictor
variables per split at each node of the trees. RF’s outputs were
analyzed by the computation of Kappa statistics, which gave an
evaluation of the overall accuracy of the models. Kappa statistics
of the selected model, calculated for the default cut-off value
(t = 0.50), were 0.919 for the training set and 0.573 for the
test set. Since our dataset was unbalanced in the number of
presence and absence records, we optimized the cut-off value
through the analysis of the ROC curve based on the test set, in
order to overcome the bias that affected RF predictions toward
presence (given that around the 70% of records in the training
set were for presence). The optimized cut-off value was found
to be 0.61 (Figure 3B). It did not affect the Kappa statistics for
the training set, which remained quite unchanged (K = 0.917),
but allowed an improvement for the test set (K = 0.637). These
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FIGURE 1 | Distribution of Cystoseira canopies across the Mediterranean Sea. Map created with QGIS software (QGIS Development Team, 2018. QGIS Geographic
Information System. O3.Open Source Geospatial Foundation: https://www.qgis.org/it/site/).

FIGURE 2 | Observed distribution of records of Cystoseira infralittoral species used in order to develop the HSM. The map shows only the areas where both
presence and absence information were available. The colors used reflect the ratio between presence and absence data per cells. The dimension of cells is
representative of the amount of available data. Map created with QGIS software (QGIS Development Team, 2018. QGIS Geographic Information System. O3.Open
Source Geospatial Foundation: https://www.qgis.org/it/site/).

values resulted the largest in comparison with those obtained
from any other RF we run and are indicative of a good model
accuracy. Confusion matrices for the training and the test set
calculated before and after the optimization of the cut-off value
are shown in the Table 2. The optimized cut-off value improved
predictions over false positives for the training set and, to a

larger extent, for the test set. While the decrease in false positives
was inevitably accompanied by an increase in false negatives,
the overall accuracy of model predictions grew by adopting the
optimal cut-off value.

Through the ROC curve analysis, we also examined the AUC
value as indicator of model accuracy. As shown in Figure 3, the
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FIGURE 3 | ROC curves of the best RF trained with the AUC for both the training (A) and the test set (B). The optimal cut-off, represented by the red dot in the
Figure 3B, was calculated on the analysis of the ROC curve based on the test set.

TABLE 2 | Confusion matrices and Kappa statistics for the RF output before and after the optimization of the cut-off value.

Confusion matrix and Kappa statistic with t = 0.50

Training set Test set

Observed Observed

Presence Absence Presence Absence

Predicted Presence 4358 44 Predicted Presence 1025 48

Absence 182 1947 Absence 242 297

Kappa = 0.919 Kappa = 0.560

Confusion matrix and Kappa statistic with t = 0.61

Training set Test set

Observed Observed

Presence Absence Presence Absence

Predicted Presence 4301 101 Predicted Presence 932 141

Absence 142 1987 Absence 143 396

Kappa = 0.917 Kappa = 0.637

AUC was 0.988 for the training set (Figure 3A) and 0.875 for
the test set (Figure 3B). These values, which were not affected by
the cut-off value, confirmed our evaluation of model output since
they resulted considerably large not only for the training, but also
for the test set.

The Relative Importance of Predictor
Variables
Variable importance was assessed on the basis of the comparison
between the permutation importance measure and the Gini
importance measure, both calculated according to the original

RF algorithm during the training procedure. From this analysis
we identified a group of predictor variables which played
a major role, although ranking differently, in increasing
classification accuracy according to both the importance
measures used (Figure 4). The most relevant predictor variables
were the topographic coastal slope (“cst”) and coast materials
(“coast_material”), which both can be regarded as an expression
of coastline geomorphology.

Looking at the permutation importance measure (Figure 4A),
the following factors linked to human pressures were identified
among the variables mostly affecting the RF output: distance to
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FIGURE 4 | Most relevant variables according to importance values obtained from both the permutation (A) and the Gini importance measures (B). Name of the
variables in alphabetical order: “ArableArea” = arable area (in km2); “botsalin” = bottom salinity; “calcite” = calcite concentration; “chmean” = chlorophyll a
concentration (mean); “coast_material” = coast material classes; “cst” = topographic coastal slope (in degrees, 30 arc-seconds resolution); “dacmean” = diffuse
attenuation coefficient; “disriver” = distance to river mouths; “dissox” = dissolved oxygen concentration; “dist200 m” = distance to 200 m isobath;
“distport” = distance to ports; “GTSR_10” = height above mean sea level in 10 years (in m); “GTSR_100” = height above mean sea level in 100 years (in m);
“maxWind” = max stress of wind from 2008 to 2017 (in Pa); “nitrate” = nitrate concentration; “oceacidif” = ocean acidification; “ph” = pH; “phosphate” = phosphate
concentration; “silicate” = silicate concentration; “sstmean” = sea surface temperature (mean); “sstrange” = sea surface temperature (annual range);
“UrbanArea” = urban area (in km2); “VerticalMovement” = vertical land movement (in mm/yr); “zeumean” = euphotic depth.

ports (“distport”) and coastal development expressed as urban
areas (“Urban Area”). Variables related to natural pressures, as the
distance to the 200 m isobath (“dist200 m”), the max stress of the
wind (“maxWind”) and the distance to river mouths (“distriver”),
were also detected as important according to the permutation
measure. On the other hand, the Gini importance measure
(Figure 4B) highlighted that some seawater physical variables,
for instance the euphotic depth (“zeu mean”), the diffuse
attenuation coefficient (“dac mean”), the mean of chlorophyll a

(“chmean”) and the nitrate concentration (“nitrate”), contributed
significantly to the splits in the RF trees.

Model Validation and Purpose
While confusion matrices and statistics based on comparison
between observed and modeled occurrences were evaluated
on presence and absence records in the test set, we used all
the presence records excluded from the training and test set
to investigate model accuracy. These records corresponded to
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4,269 “presence” pixels of the Cystoseira raster layer (Figure 5).
For each record, the number of trees in the forest that voted
for presence was analyzed. This number was then scaled
into a (0,1) range and assumed, taking into account the
optimized cut-off value, as estimates for Cystoseira presence
to be analyzed in order to improve the assessment of the
strength of model predictions. Thus, records associated with a
RF output larger than 0.61 were considered correctly predicted,
in accordance with the optimal cut-off value. We analyzed RF
output values distribution by grouping presence records in nine
Mediterranean regions aiming at assessing model accuracy on
spatially independent areas (Figure 6). Distributions obtained
from seven of these regions showed quite high probability
of presence for most records, meaning that these areas were
predicted to have suitable conditions for Cystoseira occurrence,
consistently with the observed status. Sardinia resulted having
the highest frequency of correctly predicted cases with the
median RF output value around the 0.9. The west coast of
north Italy, the eastern coast of Adriatic Sea, the Aegean Sea,
the African coasts, the western and the southern areas of
Mediterranean Sea followed immediately after Sardinia, with RF
output concentrated between the 0.7 and the 0.8 classes. These
areas were essentially predicted as suitable by the model, but with
less confidence than the first one. For the remaining regions,
i.e., the eastern Mediterranean regions and the northern Adriatic
Sea, the number of cases in which trees voted for presence
significantly decreased, pointing out that the model identifies
these areas as almost unsuitable for holding Cystoseira species.
Indeed, the median RF output value for the latter cases shifted
between the 0.3 and the 0.6 (i.e., less than the optimal cut-
off value).

Ultimately, developing a HSM for species of the Cystoseira
genus living in the shallow rocky infralittoral habitat enabled
also to carry out an exploratory analysis with the purpose of
figuring out how Cystoseira forests are distributed along all those
sites where no data were available across the Mediterranean
Sea. Considering the spatial resolution of this study, we
mapped 100,609 records for which no information occurred
(i.e., “no-data” pixels of the Cystoseira raster layer). Using
model predictions and proceeding as for “presence” pixels
considered for model validation, we investigated, for each record,
the number of trees in the RF that “voted” for presence,
which is related to the predicted probability of presence. Our
model classified 47,783 of these records as “absence” given
that the RF output was lower than the optimized cut-off value
and 52,826 as “presence” with an RF output larger than or
equal to the cut-off value. To understand the distribution of
Cystoseira occurrences across the basin, we firstly classified
pixels on the basis of the abiotic properties of the coastline
(i.e., “coast_material” variable), considering them as a limiting
factor able to control canopies occurrence. Hence, we grouped
records falling on “rock/unerodible” pixels, where canopies
could potentially occur, and separated these records from those
which covered “sand/mud” pixels, considered as unsuitable for
Cystoseira growth. Figure 7A shows the distribution of the
RF output values for the first group of pixels, which were
regarded as possibly suitable for holding Cystoseira living in the
shallow rocky infralittoral habitat species: the modal class of
RF output values lies on the right of the optimal cut-off value,
shown as a red dashed line in the figure. The left tail of the
distribution represents all records predicted as “absence” in spite
of potentially suitable geomorphological conditions. On the other

FIGURE 5 | Observed distribution of Cystoseira records used in the model validation. The map shows the areas where only presence information was available. Map
created with QGIS software (QGIS Development Team, 2018. QGIS Geographic Information System. O3.Open Source Geospatial Foundation: https://www.qgis.org/
it/site/).
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FIGURE 6 | Distribution of the RF output values for the validation set, i.e., for the Mediterranean areas where only presence records were available. The red dashed
line represents the optimal cut-off (t = 0.61).

side, Figure 7B shows the distribution of the RF output values
for “sand/mud” pixels and reveals that these pixels, as expected,
are mostly predicted as unsuitable, with the modal class of RF
output on the left of the optimal cut-off value, in accordance
with the unsuitable coast material. In this case, the right tail
of the distribution shows records predicted as “presence” even
though geomorphological conditions are unsuitable and could
be regarded as model misclassifications, most probably related
to the coarse resolution of our pixels (which might include small
suitable areas), to the particular coast exposure or composition,
or even to the lack of sufficient data in developing the HSM.

In the Figure 8 we presented an overview of our habitat
suitability assessment. High resolution details of the model
predictions are provided in the raster ASCII format as a zip file
in the Supplementary Data Sheet S1.

DISCUSSION

We produced the first effort able to deliver a georeferenced
dataset of Cystoseira forests strongly affected by human
pressures and deserving conservation priorities across the
whole Mediterranean basin. This first crucial step enabled
us to deepen our understanding on canopies distribution
and to fill gaps in our knowledge by developing a HSM
for a subset of Cystoseira species distributed on the
shallow rocky shores.

To develop the HSM, we considered areas where both
presence and absence records were available, using all other
Mediterranean regions to validate and test model performances.
Our model showed a quite high accuracy level in reproducing
Cystoseira distribution, endorsed by a large number of occurrence
and environmental data, but also enhanced by the identification

of the species of the shallow rocky shores as a rather uniform
ecological target to be modeled. On the other hand, the spatial
resolution of our study, imposed by the available resolution
for predictor variables, precluded a species-specific distribution
assessment. Fine-scale data are indeed needed in order to
improve the model in this sense (Cefalì et al., 2018). Our database
suffers from all the limitations already described across the
literature. Research efforts (published and unpublished) differ
among countries (Coll et al., 2010), and large data gaps emerged
in the eastern and southern part of the basin. Furthermore,
heterogeneous sampling methods or false absences in occupancy
surveys can lead to underestimation if the imperfect detection
of the species is not accounted for Katsanevakis et al. (2017).
These issues might have affected our spatial representation
of Cystoseira canopies, resulting in an incorrect estimate of
species distribution.

Despite the limits, the chosen approach based on the RF
technique allowed us to highlight the most relevant predictor
variables affecting the HSM and therefore those variables
better candidates to explain Cystoseira canopies distribution
and potential for regression. Considering both the importance
measures obtained as RF outputs, the topographic coastal
slope and the nature of substrate along the coast were
identifies as the main factors in controlling Cystoseira canopies
distribution, in accordance with the specific coastal conditions
required for the infralittoral species development, limited to
intertidal and shallow subtidal rocky shores (ESRI, 2012;
Mancuso et al., 2018). Some anthropogenic variables emerged
as relatively important from this analysis, but they followed
the importance of the geomorphological ones. These variables
(i.e., the distance to ports and to the urban areas), proxies
of pollution and urbanization, have been claimed to drive
the loss of Cystoseira forests in many Mediterranean regions
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FIGURE 7 | Distribution RF output values for “no-data” records, grouped on the basis of the type of coastline: (A) “rock/unerodible” pixels; (B) “sand/mud” pixels.
Red dashed lines represent the optimal cut-off (t = 0.61).
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FIGURE 8 | Map of the predicted distribution of Cystoseira infralittoral species according to RF outputs. The map is based on a combined dataset of
canopy-forming species and records of species which may not be “forest”-forming (e.g., C. compressa). It has been created with QGIS software (QGIS Development
Team, 2018. QGIS Geographic Information System. O3.Open Source Geospatial Foundation: https://www.qgis.org/it/site/).

in the last 20 years (Cormaci and Furnari, 1999; Benedetti-
Cecchi et al., 2001; Thibaut et al., 2005; Mangialajo et al., 2008;
Sales and Ballesteros, 2009; Perkol-Finkel and Airoldi, 2010).
Finally, environmental variables, such as the distance to river
mouths, the euphotic depth, the diffuse attenuation coefficient,
the mean of chlorophyll a and the nitrate concentration, also
displayed a significant role in the RF growth. Actually, these
predictors can be regarded as indicators of nutrient enhancement,
water turbidity and eutrophication levels which are included in
several studies amongst the main causes for the regression of
Cystoseira species (Cormaci and Furnari, 1999; Arévalo et al.,
2007; Sales and Ballesteros, 2009; Fraschetti et al., 2011; Sala
et al., 2012; Mancuso et al., 2018). Nevertheless, attention
should be drawn to the fact that RF, given its potential to
reflect the resemblance between the local spatial structure of
predictor variables and species distribution, does not allow
to reveal causal relationships. In our model, RF highlights
that anthropogenic pressures, directly or indirectly, could have
important roles in affecting the distribution of Cystoseira species,
identifying several factors to be prioritized in conservation
actions devoted to this genus. However, experimental studies
are needed to identify the drivers for the observed canopies
regression, as well as a shift from a single-threat approach
toward a multiple-stressor one should be adopted in order to
understand patterns of distribution and trajectories of change
in Cystoseira forests (Benedetti-Cecchi et al., 2015; Mancuso
et al., 2018). Notwithstanding, recently developed methods based
on the hybridization of experimental and observational data
provide novel opportunities to leverage the scope and causal
inferential strength of large-scale studies (Benedetti-Cecchi et al.,
2018). For example, these methods allow integrating empirical

estimates of biological interactions into species distribution
models, effectively increasing the predictive accuracy and
ability to attribute causality of these models. This might be
particularly critical for Cystoseira since another potentially strong
but yet unexplored predictor for the presence of macroalgal
forests is the emergence of highly effective grazers, invasive
Indo Pacific rabbitfish (especially Siganus luridus), which in
the southeast Mediterranean (Turkey, Israel) already decimate
all erect, edible, macroalgae down to turf barrens (Rilov
et al., 2018). The fishes are rapidly spreading to the west
and north and the rate of spread of is probably strongly
related to water temperature (and is thus probably facilitated
by ocean warming).

From the validation phase of the modeling procedure we
determined the predictive accuracy in spatially independent
Mediterranean areas in order to better evaluate model
performances. Indeed, testing the model in a wider variety
of spatial context means to better define the range of applications
for which the model predictions are suited (Guisan and
Zimmermann, 2000). In most cases model accuracy was
high and presence records matched with pixels classified as
suitable for holding Cystoseira canopies. In particular, Sardinia
resulted having the highest frequency of correctly predicted
cases and this result possibly derives from the low presence of
anthropogenic pressures affecting the area. Model predictions
showed an evident misclassification rate only for the eastern
Mediterranean regions and the northern Adriatic Sea. Reasons
for model biases probably lie in distinctive conditions, including
the presence of human threats or unsuitable environmental
conditions, characterizing these coastal areas. A finer resolution
of predictor variables would enhance the RF ability to correctly

Frontiers in Marine Science | www.frontiersin.org 14 February 2020 | Volume 7 | Article 20

https://www.qgis.org/it/site/
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00020 February 4, 2020 Time: 17:3 # 15

Fabbrizzi et al. Modeling Macroalgal Forest Distribution

reproduce Cystoseira distribution, pointing out environmental
heterogeneities hidden under a coarser resolution used in this
study. Data on the environmental drivers affecting intertidal
and nearshore ecosystems (e.g., human impacts or the type of
shoreline) are largely incomplete (Halpern et al., 2008), reducing
our ability to assess the present and the future state of marine
habitats. Moreover, it should be stressed that especially for
the eastern Mediterranean regions, outdated occurrence data
may have led to an inaccurate representation of the current
distribution of the canopies.

Final Remarks
Underpinned by model outputs, we will better direct our
management and restoration efforts on the basis of the
predictions on the presence/absence of the species, also combined
to the information about human pressures. A first model attempt
was performed by Buonomo et al. (2018) analyzing intertidal
Cystoseira populations in order to predict their future ranges
according to different climatic scenarios in the Mediterranean
Sea. According to that model an important loss of suitable areas
is expected across the range of distribution of the habitat-forming
seaweed species already by 2050, with cascading effects on the
whole ecosystem and the services that it provides.

In this respect, the model output from this study allows
to investigate areas classified as suitable with high probability
of Cystoseira occurrence, to assess if the predicted status of
presence matched the real one and thus to define new suitable
locations for restoration plans. As a result, the HSM could be
seen as a useful baseline tool for the assessment of Cystoseira
distribution and for the establishment of future-oriented marine
planning initiatives from both conservation and restoration point
of view, at least as far as the species on the shallow rocky
shores. However, there is still a long way until we can use
these predictions for true management and (mainly) restoration.
Actually, both have to rely on species-specific actions and a
(more) spatially accurate information on the environmental
factors at the places to be managed or restored. In the case
of restoration, it is also pivotal that the pressures that drove
the disappearance of the canopies have been mitigated. For this
reason, acting on reducing and carefully planning the distribution
of local pressures should be considered a priority (Buonomo
et al., 2018). In any case, to assess the spatial generality of
models, an exhaustive evaluation of how the quality of its output
varies within different regional context is required (Gorman
et al., 2013). As stressed from the model validation, predictions
for Mediterranean regions where model performances are quite
limited due to environmental distinctiveness and heterogeneities
(e.g., the eastern Mediterranean areas) may not reproduce
the actual canopies distribution. In this regard, the large
proportion of “no-data” records is an important limit in the
development of the HSM and therefore in the understanding

of the potential distribution of Cystoseira forests across all the
Mediterranean coastlines.

Improving model outputs with a finer resolution of predictor
variable layers and better dataset with species occurrences would
allow more reliable predictions also for these regions and
would promote the identification of species-specific suitable and
unsuitable areas making our model more sensitive to ecological
differences among species.
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