54 research outputs found

    The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome

    Get PDF
    Background: Microorganisms serve important functions within numerous eukaryotic host organisms. An understanding of the variation in the plant niche-level microbiome, from rhizosphere soils to plant canopies, is imperative to gain a better understanding of how both the structural and functional processes of microbiomes impact the health of the overall plant holobiome. Using Populus trees as a model ecosystem, we characterized the archaeal/bacterial and fungal microbiome across 30 different tissue-level niches within replicated Populus deltoides and hybrid Populus trichocarpa × deltoides individuals using 16S and ITS2 rRNA gene analyses. Results: Our analyses indicate that archaeal/bacterial and fungal microbiomes varied primarily across broader plant habitat classes (leaves, stems, roots, soils) regardless of plant genotype, except for fungal communities within leaf niches, which were greatly impacted by the host genotype. Differences between tree genotypes are evident in the elevated presence of two potential fungal pathogens, Marssonina brunnea and Septoria sp., on hybrid P. trichocarpa × deltoides trees which may in turn be contributing to divergence in overall microbiome composition. Archaeal/bacterial diversity increased from leaves, to stem, to root, and to soil habitats, whereas fungal diversity was the greatest in stems and soils. Conclusions: This study provides a holistic understanding of microbiome structure within a bioenergy relevant plant host, one of the most complete niche-level analyses of any plant. As such, it constitutes a detailed atlas or map for further hypothesis testing on the significance of individual microbial taxa within specific niches and habitats of Populus and a baseline for comparisons to other plant species

    A case of behavioural diversification in male floral function – the evolution of thigmonastic pollen presentation

    Get PDF
    The authors gratefully acknowledge funding provided by an Else-Neumann-Stipendium (http://www.fu-berlin.de/sites/promovieren/drs/nachwuchs/nachwuchs/nafoeg.html), Deutscher Akademischer Austausch Dienst (DAAD) and botconsult GmbH at different stages of data acquisition. We thank Tobias Grass, Joana Bergmann and Franziska Weber (Freie UniversitÀt Berlin) for help with data collection in the field and in the greenhouse. Nicole Schmandt, Federico Luebert, Juliana Chacón and Dietmar Quant (UniversitÀt Bonn) provided help in the molecular laboratory and the edition of the molecular dataset. We furthermore thank Markus Ackermann (Koblenz) for providing photographs, Philipp Klein (Berlin) for editing the video and Katy Jones (Berlin) for helpful comments on an earlier version of the manuscript. Rafael Acuña has been supported by the ALECOSTA scholarship program. Coverage of the article processing charge by the German Research Foundation via the Open Access Publication Fund of the Freie UniversitÀt Berlin is gratefully acknowledged.Peer reviewedPublisher PD

    A metabolite roadmap of the wood-forming tissue in Populus tremula

    Get PDF
    Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation

    On tree longevity

    No full text
    Large, majestic trees are iconic symbols of great age in living organisms. Published evidence suggests that trees do not die because of genetically programmed senescence in their meristems, and rather are killed by an external agent or a disturbance event. Long tree lifespans are therefore allowed by specific combinations of life-history traits within realized niches that support resistance to, or avoidance of, extrinsic mortality. Another requirement for trees to achieve their maximum longevity is either sustained growth over extended periods of time or at least the capacity to increase their growth rates when conditions allow it. The growth plasticity and modularity of trees can then be viewed as an evolutionary advantage that allows them to survive and reproduce for centuries and millennia. As more and more scientific information is systematically collected on tree ages under various ecological settings, it becomes clear that tree longevity is a key trait for global syntheses of life history strategies, especially in connection with disturbance regimes and their possible future modifications. In addition, we challenge the long-held notion that shade-tolerant, late-successional species have longer lifespans than early-successional species by pointing out that tree species with extreme longevity do not fit this paradigm. Identifying extremely old trees is therefore the groundwork not only for protecting and/or restoring entire landscapes, but also to revisit and update classic ecological theories that shape our understanding of environmental change
    • 

    corecore