265 research outputs found

    Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Get PDF
    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, œρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study

    Get PDF
    Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies

    An excess of niche differences maximizes ecosystem functioning

    Get PDF
    Ecologists have long argued that higher functioning in diverse communities arises from the niche differences stabilizing species coexistence and from the fitness differences driving competitive dominance. However, rigorous tests are lacking. We couple field-parameterized models of competition between 10 annual plant species with a biodiversity-functioning experiment under two contrasting environmental conditions, to study how coexistence determinants link to biodiversity effects (selection and complementarity). We find that complementarity effects positively correlate with niche differences and selection effects differences correlate with fitness differences. However, niche differences also contribute to selection effects and fitness differences to complementarity effects. Despite this complexity, communities with an excess of niche differences (where niche differences exceeded those needed for coexistence) produce more biomass and have faster decomposition rates under drought, but do not take up nutrients more rapidly. We provide empirical evidence that the mechanisms determining coexistence correlate with those maximizing ecosystem functioning. It is unclear how biodiversity-ecosystem functioning and species coexistence mechanisms are linked. Here, Godoy and colleagues combine field-parameterised competition models with a BEF experiment to show that mechanisms leading to more stable species coexistence lead to greater productivity, but not necessarily to enhanced functions other than primary production

    The impact of 10-valent pneumococcal vaccine introduction on invasive disease in Fiji.

    Get PDF
    BACKGROUND: In 2012, Fiji introduced the 10-valent pneumococcal conjugate vaccine (PCV10). We assessed the impact of PCV10 on invasive pneumococcal disease (IPD), probable bacterial or pneumococcal meningitis (PBPM), meningitis and sepsis 3-5 years post-introduction. METHODS: Laboratory-confirmed IPD and PBPM cases were extracted from national laboratory records. ICD-10-AM coded all-cause meningitis and sepsis cases were extracted from national hospitalisation records. Incidence rate ratios were used to compare outcomes pre/post-PCV10, stratified by age groups: 1-23m, 2-4y, 5-9y, 10-19y, 20-54y, ≄55y. To account for different detection and serotyping methods in the pre-and post-PCV10 period, a Bayesian inference model estimated serotype-specific changes in IPD, using pneumococcal carriage and surveillance data. FINDINGS: There were 423 IPD, 1,029 PBPM, 1,391 all-cause meningitis and 7,611 all-cause sepsis cases. Five years post-PCV10 introduction, IPD declined by 60% (95%CI: 37%, 76%) in children 1-23m months old, and in age groups 2-4y, 5-9y, 10-19y although confidence intervals spanned zero. PBPM declined by 36% (95%CI: 21%, 48%) among children 1-23 months old, and in all other age groups, although some confidence intervals spanned zero. Among children <5y of age, PCV10-type IPD declined by 83% (95%CI; 70%, 90%) and with no evidence of change in non-PCV10-type IPD (9%, 95%CI; -69, 43%). There was no change in all-cause meningitis or sepsis. Post-PCV10, the most common serotypes in vaccine age-eligible and non-age eligible people were serotypes 8 and 23B, and 3 and 7F, respectively. INTERPRETATIONS: Our study demonstrates the effectiveness of PCV10 against IPD in a country in the Asia-Pacific of which there is a paucity of data. FUNDING: This study was support by the Department of Foreign Affairs and Trade of the Australian Government and Fiji Health Sector Support Program (FHSSP). FHSSP is implemented by Abt JTA on behalf of the Australian Government

    Impact of Visual Repetition Rate on Intrinsic Properties of Low Frequency Fluctuations in the Visual Network

    Get PDF
    BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz) fluctuations (LFFs) during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1) interactions between visual stimuli and resting-state; (2) impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses), fALFF (fractional Amplitude of Low Frequency Fluctuation), and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration) and disordered behaviors (early blind), but also exogenous sensory stimuli (visual stimuli with various repetition rates). It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains

    A fluorescence approach to investigate repartitioning of coalescing agents in acrylic polymer emulsions

    Get PDF
    Repartitioning of co-solvents between particles of latex emulsions was investigated by means of a fluorescence method based on the detection of the amount of co-solvent via the solvatochromic shift of the emission maximum of a fluorescent probe, copolymerized at a low concentration. Complete repartitioning of co-solvents between particles of latex materials with a low Tg (ca. 25 °C) occurred within minutes. For a hydrophilic latex with a Tg of 68 °C, equilibration was achieved within an hour. Repartitioning was faster for more hydrophobic co-solvents. For a hydrophobic latex of similar Tg, co-solvent repartitioning took place on the same time scale, but complete equilibration was not reached. Possibly, there is an additional slow component in the repartitioning, or the prolonged presence of co-solvent causes a structural change in the latex particles that affects the outcome of the experiment

    A quantitative analysis of lymphatic vessels in human breast cancer, based on LYVE-1 immunoreactivity

    Get PDF
    This study was undertaken to determine the highly sensitive method for detecting tumour lymphatic vessels in all the fields of each slide (LV), lymphatic microvessel density (LMVD) and lymphatic vessel invasion (LVI) and to compare them with other prognostic parameters using immunohistochemical staining with polyclonal (PCAB) and monoclonal antibodies (MCAB) to the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), and the pan-endothelial marker factorVIII in a series of 67 human breast cancers. In all LYVE-1-stained sections, LV (some of which contained red blood cells) were frequently found localised in extralobular stroma, dermis, connective tissue stroma and adjacent to artery and vein, but were rare within the intralobular stroma or the tumour body (3/67 cases) or areas of widespread invasion. In contrast small blood vessels were observed in intra- and extralobular stroma in the factor VIII-stained sections. Quantitation of vessel numbers revealed that LYVE-1/PCAB detected a significantly larger number of LV than either H&E or LYVE-1/MCAB (P<0.0001). LYVE-1/PCAB detected LVI in 25/67 cases (37.3%) and their presence was significantly associated with both lymph node metastasis (χ2=4.698, P=0.0248) and unfavourable overall survival (OS) (P=0.0453), while not relapse- free survival (RFS) (P=0.2948). LMVD had no influence for RFS and OS (P=0.4879, P=0.1463, respectively). Our study demonstrates that immunohistochemistry with LYVE-1/PCAB is a highly sensitive method for detecting tumour LV/LVI in breast cancer and LVI is a useful prognostic indicator for lymphatic tumour dissemination
    • 

    corecore