342 research outputs found
Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic
We examined the effects of short (<1–4 years) and long-term (22 years) nitrogen (N) and/or phosphorus (P) addition on the foliar CO2 exchange parameters of the Arctic species Betula nana and Eriophorum vaginatum in northern Alaska. Measured variables included: the carboxylation efficiency of Rubisco (Vcmax), electron transport capacity (Jmax), dark respiration (Rd), chlorophyll a and b content (Chl), and total foliar N (N). For both B. nana and E. vaginatum, foliar N increased by 20–50 % as a consequence of 1–22 years of fertilisation, respectively, and for B. nana foliar N increase was consistent throughout the whole canopy. However, despite this large increase in foliar N, no significant changes in Vcmax and Jmax were observed. In contrast, Rd was significantly higher (>25 %) in both species after 22 years of N addition, but not in the shorter-term treatments. Surprisingly, Chl only increased in both species the first year of fertilisation (i.e. the first season of nutrients applied), but not in the longer-term treatments. These results imply that: (1) under current (low) N availability, these Arctic species either already optimize their photosynthetic capacity per leaf area, or are limited by other nutrients; (2) observed increases in Arctic NEE and GPP with increased nutrient availability are caused by structural changes like increased leaf area index, rather than increased foliar photosynthetic capacity and (3) short-term effects (1–4 years) of nutrient addition cannot always be extrapolated to a larger time scale, which emphasizes the importance of long-term ecological experiments
Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes
Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Recommended from our members
Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling
Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes
Climate change and outdoor regional living plant collections: an example from mainland Portugal
Original PaperClimate change threatens not only plant species occurring naturally, but also
impacts on regional living plant collections, which play an important role in ex situ
conservation strategies. In the last few years, several global circulation models have been
used to predict different global climate change scenarios. Due to their coarse resolutions,
and while more detailed regional approaches are not available, downscaling techniques
have been proposed, as a very simple first approach to increase detail. We analysed seven
sites on mainland Portugal with potential for species conservation (four botanic gardens
and three universities), in the light of downscaled climate change scenarios, using an
environmental envelope approach and a predefined bioclimatic neighbourhood for each
site. Thresholds for the bioclimatic neighbourhood were based on Rivas-Martı´nez’s Bioclimatic
Classification of the Earth. For each site, the expected geographical shift of its
original bioclimatic neighbourhood (1950–2000) was mapped for 2020, 2050 and 2080.
Analysing those shifts enabled us to delineate knowledge-transfer paths between sites,
according to the analysed scenarios. We concluded that, according to the Intergovernmental
Panel on Climate Change A2 scenario, all considered sites will be outside the
predefined bioclimatic neighbourhood by 2080, while according to the B2 scenario all of
them will be inside that neighbourhood, although sometimes marginally so. Therefore, the
implementation of global sustainability measures as considered in the B2 scenario family
can be of great importance in order to delay significantly the impacts of climate change,
giving extra time for the adaptation of the outdoor regional living plant collectionsinfo:eu-repo/semantics/publishedVersio
Practicing stewardship: EU biofuels policy and certification in the UK and Guatemala
Biofuels have transitioned from a technology expected to deliver numerous benefits to a highly contested socio-technical solution. Initial hopes about their potential to mitigate climate change and to deliver energy security benefits and rural development, particularly in the Global South, have unravelled in the face of numerous controversies. In recognition of the negative externalities associated with biofuels, the European Union developed sustainability criteria which are enforced by certification schemes. This paper draws on the literature on stewardship to analyse the outcomes of these schemes in two countries: the UK and Guatemala. It explores two key issues: first, how has European Union biofuels policy shaped biofuel industries in the UK and Guatemala? And second, what are the implications for sustainable land stewardship? By drawing attention to the outcomes of European demand for biofuels, we raise questions about the ability of European policy to drive sustainable land practices in these two cases. The paper concludes that, rather than promoting stewardship, the current governance framework effectively rubberstamps existing agricultural systems and serves to further embed existing inequalities
Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation
Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha−1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age (<25 years vs. ≥25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation
Plant Identity Influences Decomposition through More Than One Mechanism
Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss
Negative Impacts of Human Land Use on Dung Beetle Functional Diversity
The loss of biodiversity caused by human activity is assumed to alter ecosystem
functioning. However our understanding of the magnitude of the effect of these
changes on functional diversity and their impact on the dynamics of ecological
processes is still limited. We analyzed the functional diversity of
copro-necrophagous beetles under different conditions of land use in three
Mexican biosphere reserves. In Montes Azules pastures, forest fragments and
continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of
different sizes were analyzed and in Barranca de Metztitlán two types of
xerophile scrub with different degrees of disturbance from grazing were
analyzed. We assigned dung beetle species to functional groups based on food
relocation, beetle size, daily activity period and food preferences, and as
measures of functional diversity we used estimates based on multivariate
methods. In Montes Azules functional richness was lower in the pastures than in
continuous rainforest and rainforest fragments, but fragments and continuous
forest include functionally redundant species. In small rainforest fragments
(<5 ha) in Los Tuxtlas, dung beetle functional richness was lower than in
large rainforest fragments (>20 ha). Functional evenness and functional
dispersion did not vary among habitat types or fragment size in these reserves.
In contrast, in Metztitlán, functional richness and functional dispersion
were different among the vegetation types, but differences were not related to
the degree of disturbance by grazing. More redundant species were found in
submontane than in crassicaule scrub. For the first time, a decrease in the
functional diversity in communities of copro-necrophagous beetles resulting from
changes in land use is documented, the potential implications for ecosystem
functioning are discussed and a series of variables that could improve the
evaluation of functional diversity for this biological group is proposed
Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change
Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/− 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere
- …
