111 research outputs found

    A pseudo-spectral method for the Kardar-Parisi-Zhang equation

    Full text link
    We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudo-spectral approximation of the non-linear term. The method is tested in (1+1)- and (2+1)- dimensions, where it is shown to reproduce the current most reliable estimates of the critical exponents based on Restricted Solid-on-Solid simulations. In particular it allows the computations of various correlation and structure functions with high degree of numerical accuracy. Some deficiencies which are common to all previously used finite-difference schemes are pointed out and the usefulness of the present approach in this respect is discussed.Comment: 12 pages, 13 .eps figures, revetx4. A few equations have been corrected. Erratum sent to Phys. Rev.

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Random walks and polymers in the presence of quenched disorder

    Full text link
    After a general introduction to the field, we describe some recent results concerning disorder effects on both `random walk models', where the random walk is a dynamical process generated by local transition rules, and on `polymer models', where each random walk trajectory representing the configuration of a polymer chain is associated to a global Boltzmann weight. For random walk models, we explain, on the specific examples of the Sinai model and of the trap model, how disorder induces anomalous diffusion, aging behaviours and Golosov localization, and how these properties can be understood via a strong disorder renormalization approach. For polymer models, we discuss the critical properties of various delocalization transitions involving random polymers. We first summarize some recent progresses in the general theory of random critical points : thermodynamic observables are not self-averaging at criticality whenever disorder is relevant, and this lack of self-averaging is directly related to the probability distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. We describe the results of this analysis for the bidimensional wetting and for the Poland-Scheraga model of DNA denaturation.Comment: 17 pages, Conference Proceedings "Mathematics and Physics", I.H.E.S., France, November 200

    Stop looking angry and smile, please: start and stop of the very same facial expression differentially activate threat- and reward-related brain networks

    Get PDF
    Static pictures of emotional facial expressions have been found to activate brain structures involved in the processing of emotional stimuli. However, in everyday live, emotional expressions are changing rapidly, and the processing of the onset vs the offset of the very same emotional expression might rely on different brain networks, presumably leading to different behavioral and physiological reactions (e.g. approach or avoidance). Using functional magnetic resonance imaging, this was examined by presenting video clips depicting onsets and offsets of happy and angry facial expressions. Subjective valence and threat ratings clearly depended on the direction of change. Blood oxygen level dependent responses indicate both reward- and threat-related activations for the offset of angry expressions. Comparing onsets and offsets, angry offsets were associated with stronger ventral striatum activation than angry onsets. Additionally, the offset of happy and the onset of angry expressions showed strong common activity in the lateral orbitofrontal cortex bilaterally, the left amygdala and the left insula, whereas the onset of happy and the offset of angry expressions induced significant activation in the left dorsal striatum. In sum, the results confirm different activity in motivation-related brain areas in response to the onset and offset of the same emotional expression and highlight the importance of temporal characteristics of facial expressions for social communication

    Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region.

    Get PDF
    Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine
    corecore