20 research outputs found

    Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus

    Get PDF
    An emerging infectious pathogen Hymenoscyphus pseudoalbidus has spread across much of Europe within recent years causing devastating damage on European common ash trees (Fraxinus excelsior) and associated plant communities. The present study demonstrates the presence of additive genetic variation in susceptibility of natural F. excelsior populations to the new invasive disease. We observe high levels of additive variation in the degree of susceptibility with relatively low influence of environmental factors (narrow-sense heritability = 0.37–0.52). Most native trees are found to be highly susceptible, and we estimate that only around 1% has the potential of producing offspring with expected crown damage of <10% under the present disease pressure. The results suggest that the presence of additive genetic diversity in natural F. excelsior populations can confer the species with important ability to recover, but that low resistance within natural European populations is to be expected because of a low frequency of the hypo-sensitive trees. Large effective population sizes will be required to avoid genetic bottlenecks. The role of artificial selection and breeding for protection of the species is discussed based on the findings

    Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior

    No full text
    International audienceHow flowering plants have recurrently evolved from hermaphroditism to separate sexes (dioecy) is a central question in evolutionary biology. Here, we investigate whether diallelic self-incompatibility (DSI) is associated with sexual specialization in the polygamous common ash (Fraxinus excelsior), which would ultimately facilitate the evolution towards dioecy. Using interspecific crosses, we provide evidence of strong relationships between the DSI system and sexual phenotype. The reproductive system in F. excelsior that was previously viewed as polygamy (co-occurrence of unisexuals and hermaphrodites with varying degrees of allocation to the male and female functions) thus appears to actually behave as a subdioecious system. Hermaphrodites and females belong to one SI group and functionally reproduce as females, whereas males and male-biased hermaphrodites belong to the other SI group and are functionally males. Our results offer an alternative mechanism for the evolution of sexual specialization in flowering plant
    corecore