1,311 research outputs found
Tos4 mediates gene expression homeostasis through interaction with HDAC complexes independently of H3K56 acetylation
Saccharomyces cerevisiae exhibits gene expression homeostasis, which is defined as the buffering of transcription levels against changes in DNA copy number during the S phase of the cell cycle. It has been suggested that S. cerevisiae employs an active mechanism to maintain gene expression homeostasis through Rtt109-Asf1-dependent acetylation of histone H3 on lysine 56 (H3K56). Here, we show that gene expression homeostasis can be achieved independently of H3K56 acetylation by Tos4 (Target of Swi6-4). Using Nanostring technology, we establish that Tos4-dependent gene expression homeostasis depends on its forkhead-associated (FHA) domain, which is a phosphopeptide recognition domain required to bind histone deacetylases (HDACs). We demonstrate that the mechanism of Tos4-dependent gene expression homeostasis requires its interaction with the Rpd3L HDAC complex. However, this is independent of Rpd3’s well-established roles in both histone deacetylation and controlling the DNA replication timing program, as established by deep sequencing of Fluorescence-Activated Cell Sorted (FACS) S and G2 phase populations. Overall, our data reveals that Tos4 mediates gene expression homeostasis through its FHA domain-dependent interaction with the Rpd3L complex, which is independent of H3K56ac
The relationship between appetite and food preferences in British and Australian children
Background: Appetitive traits and food preferences are key determinants of children’s eating patterns but it is unclear how these behaviours relate to one another. This study explores relationships between appetitive traits and preferences for fruits and vegetables, and energy dense, nutrient poor (noncore) foods in two distinct samples of Australian and British preschool children. Methods: This study reports secondary analyses of data from families participating in the British GEMINI cohort study (n = 1044) and the control arm of the Australian NOURISH RCT (n = 167). Food preferences were assessed by parent-completed questionnaire when children were aged 3–4 years and grouped into three categories; vegetables, fruits and noncore foods. Appetitive traits; enjoyment of food, food responsiveness, satiety responsiveness, slowness in eating, and food fussiness were measured using the Children’s Eating Behaviour Questionnaire when children were 16 months (GEMINI) or 3–4 years (NOURISH). Relationships between appetitive traits and food preferences were explored using adjusted linear regression analyses that controlled for demographic and anthropometric covariates. Results: Vegetable liking was positively associated with enjoyment of food (GEMINI; β = 0.20 ± 0.03, p < 0.001, NOURISH; β = 0.43 ± 0.07, p < 0.001) and negatively related to satiety responsiveness (GEMINI; β = -0.19 ± 0.03, p < 0.001, NOURISH; β = -0.34 ± 0.08, p < 0.001), slowness in eating (GEMINI; β = -0.10 ± 0.03, p = 0.002, NOURISH; β = -0.30 ± 0.08, p < 0.001) and food fussiness (GEMINI; β = −0.30 ± 0.03, p < 0.001, NOURISH; β = -0.60 ± 0.06, p < 0.001). Fruit liking was positively associated with enjoyment of food (GEMINI; β = 0.18 ± 0.03, p < 0.001, NOURISH; β = 0.36 ± 0.08, p < 0.001), and negatively associated with satiety responsiveness (GEMINI; β = −0.13 ± 0.03, p < 0.001, NOURISH; β = −0.24 ± 0.08, p = 0.003), food fussiness (GEMINI; β = -0.26 ± 0.03, p < 0.001, NOURISH; β = −0.51 ± 0.07, p < 0.001) and slowness in eating (GEMINI only; β = -0.09 ± 0.03, p = 0.005). Food responsiveness was unrelated to liking for fruits or vegetables in either sample but was positively associated with noncore food preference (GEMINI; β = 0.10 ± 0.03, p = 0.001, NOURISH; β = 0.21 ± 0.08, p = 0.010). Conclusion: Appetitive traits linked with lower obesity risk were related to lower liking for fruits and vegetables, while food responsiveness, a trait linked with greater risk of overweight, was uniquely associated with higher liking for noncore foods
Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia
BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana
The present study reports the role of auxin and its transport inhibitor during the establishment of an efficient and optimized protocol for the somatic embryogenesis in Digitalis trojana Ivan. Hypocotyl segments (5 mm long) were placed vertically in the Murashige and Skoog medium supplemented with three sets [indole-3-acetic acid (IAA) alone or 2,3,5-triiodobenzoic acid (TIBA) alone or IAA-TIBA combination] of formulations of plant growth regulators, to assess their differential influence on induction and proliferation of somatic embryos (SEs). IAA alone was found to be the most effective, at a concentration of 0.5 mg/l, inducing similar to 10 SEs per explant with 52% induction frequency. On the other hand, the combination of 0.5 mg/l of IAA and 1 mg/l of TIBA produced significantly fewer (similar to 3.6 SEs) and abnormal (enlarged, oblong, jar and cup-shaped) SEs per explant with 24% induction frequency in comparison to that in the IAA alone. The explants treated with IAA-TIBA exhibited a delayed response along with the formation of abnormal SEs. Our study revealed that IAA induces high-frequency SE formation when used singly, but the frequency gradually declines when IAA was coupled with increasing levels of TIBA. Eventually, our findings bring new insights into the roles of auxin and its polar transport in somatic embryogenesis of D. trojana
Access to and utilisation of GP services among Burmese migrants in London: a cross-sectional descriptive study
ABSTRACT: BACKGROUND: An estimated 10,000 Burmese migrants are currently living in London. No studies have been conducted on their access to health services. Furthermore, most studies on migrants in the United Kingdom (UK) have been conducted at the point of service provision, carrying the risk of selection bias. Our cross-sectional study explored access to and utilisation of General Practice (GP) services by Burmese migrants residing in London. METHODS: We used a mixed-method approach: a quantitative survey using self-administered questionnaires was complemented by qualitative in-depth interviews for developing the questionnaire and triangulating the findings of the survey. Overall, 137 questionnaires were received (a response rate of 57%) and 11 in-depth interviews conducted. The main outcome variables of the study included GP registration, barriers towards registration, GP consultations, barriers towards consultations, and knowledge on entitlements to health care. Quantitative data were analysed using descriptive statistics, association tests, and a multivariate analysis using logistic regression. The qualitative information was analysed using content analysis. RESULTS: The respondents were young, of roughly equal gender (51.5% female), well educated, and had a fair level of knowledge on health services in the UK. Although the GP registration rate was relatively high (80%, 109 out of 136), GP service utilisation during the last episode of illness, at 56.8% (54 out of 95), was low. The statistical analysis showed that age being younger than 35 years, lacking prior overseas experience, having an unstable immigration status, having a shorter duration of stay, and resorting to self-medication were the main barriers hindering Burmese migrants from accessing primary health care services. These findings were corroborated by the in-depth interviews. CONCLUSIONS: Our study found that having formal access to primary health care was not sufficient to ensure GP registration and health care utilisation. Some respondents faced difficulties in registering with GP practices. Many of those who have registered prefer to forego GP services in favour of self-medication, partly due to long waiting times and language barriers. To ensure that migrants enjoy the health services they need and to which they are entitled, more proactive steps are required, including those that make health services culturally responsiv
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy
Background
A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets.
Methods
Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis.
Results
A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001).
Conclusion
We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
- …