1,913 research outputs found

    Co-seismic ground deformation of Yushu Earthquake detected with D-InSAR technique

    Get PDF
    An earthquake of magnitude 7.1 suddenly occurred in Yushu county of Qinghai province on April 14, 2010. This paper presents the studies of using the data of Advanced Land Observing Satellite-Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) before and after the earthquake to examine and calculate the co-seismic ground deformation. The differential SAR interferometry (D-InSAR) technique is used. The results show that the earthquake caused the ground deformation over a large area. The extension of the ground deformation followed the south-east to east direction and along the Yushu-Ganzi fault zone. The largest deformation was found about 350 mm at 33.7°N 96.81°E. It is along the line of sight (LOS) of SAR and can be detected with D-InSAR technique. The detected ground deformation was mainly uplifting. The detected ground deformation has an important value for evaluating the extent of ground damage and seismicity in Yushu after earthquake, inferring the nature of the quake faulting, and studying characteristics of seismic deformation. 2010-04-14青海玉树发生7.1级地震后, 作者利用震前和震后获取的日本ALOS卫星PALSAR遥感数据, 开展了差分干涉雷达(D-InSAR)地震同震形变测量与分析。结果表明: 玉树地震引起较大范围地表变形, 地震变形沿玉树—甘孜断裂带向南东东方向扩展, 在N33.7°, E96.81°附近达到最大形变量, D-InSAR监测到雷达视向上的最大形变量为35cm。地表形变特征对于评价玉树地震破坏程度、推断断层性质、研究地震形变和地震孕育特征具有重要的参考价值

    Targeted ablation and reorganization of the principal preplate neurons and their neuroblasts identified by golli promoter transgene expression in the neocortex of mice

    Get PDF
    The present study delineates the cellular responses of dorsal pallium to targeted genetic ablation of the principal preplate neurons of the neocortex. Ganciclovir treatment during prenatal development (E11–E13; where E is embryonic day) of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene, linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP (τ-enhanced green fluorescent protein) and lacZ (lacZ galactosidase) reporters] localized in preplate neurons. Morphogenetic fates of attacked neurons and neuroblasts, and their successors, were assessed by multiple labelling in time-series comparisons between ablated (HSV-TK+/0) and control (HSV-TK0/0) littermates. During ablation generation, neocortical growth was suppressed, and compensatory reorganization of non-GPT ventricular zone progenitors of dorsal pallium produced replacements for killed GPT neuroblasts. Replacement and surviving GPT neuroblasts then produced replacements for killed GPT neurons. Near-normal restoration of their complement delayed the settlement of GPT neurons into the reconstituted preplate, which curtailed the outgrowth of pioneer corticofugal axons. Based on this evidence, we conclude that specific cell killing in ablated mice can eliminate a major fraction of GPT neurons, with insignificant bystander killing. Also, replacement GPT neurons in ablated mice originate exclusively by proliferation from intermediate progenitor GPT neuroblasts, whose complement is maintained by non-GPT progenitors for inductive regulation of the total complement of GPT neurons. Finally, GPT neurons in both normal and ablated mice meet all morphogenetic criteria, including the ‘outside-in’ vertical gradient of settlement, presently used to identify principal preplate neurons. In ablated mice, delayed organization of these neurons desynchronizes and isolates developing neocortex from the rest of the brain, and permanently impairs its connectivity

    Identification and Characterization of MicroRNAs in Asiatic Cotton (Gossypium arboreum L.)

    Get PDF
    To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR). The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE) and adjusted MFE (AMFE) and high MFE index (MFEI). Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Surface-enhanced Raman spectroscopy of the endothelial cell membrane

    Get PDF
    We applied surface-enhanced Raman spectroscopy (SERS) to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces

    Differential expression of microRNAs during fiber development between fuzzless- lintless mutant and its wild-type allotetraploid cotton

    Get PDF
    Cotton is one of the most important textile crops but little is known how microRNAs regulate cotton fiber development. Using a well-studied cotton fiberless mutant Xu-142-fl, we compared 54 miRNAs for their expression between fiberless mutant and its wildtype. In wildtype Xu-142, 26 miRNAs are involved in cotton fiber initiation and 48 miRNAs are related to primary wall synthesis and secondary wall thickening. Thirty three miRNAs showed different expression in fiber initiation between Xu-142 and Xu- 142-fl. These miRNAs potentially target 723 protein-coding genes, including transcription factors, such as MYB, ARF, and LRR. ARF18 was newly predicted targets of miR160a, and miR160a was expressed at higher level in −2DPA of Xu-142-fl compared with Xu-142. Furthermore, the result of Gene Ontology- based term classification (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows that miRNA targets were classified to 222 biological processes, 64 cellular component and 42 molecular functions, enriched in 22 KOG groups, and classified into 28 pathways. Together, our study provides evidence for better understanding of miRNA regulatory roles in the process of fiber development, which is helpful to increase fiber yield and improve fiber quality

    Genome-Wide Functional Analysis of the Cotton Transcriptome by Creating an Integrated EST Database

    Get PDF
    A total of 28,432 unique contigs (25,371 in consensus contigs and 3,061 as singletons) were assembled from all 268,786 cotton ESTs currently available. Several in silico approaches [comparative genomics, Blast, Gene Ontology (GO) analysis, and pathway enrichment by Kyoto Encyclopedia of Genes and Genomes (KEGG)] were employed to investigate global functions of the cotton transcriptome. Cotton EST contigs were clustered into 5,461 groups with a maximum cluster size of 196 members. A total of 27,956 indel mutants and 149,616 single nucleotide polymorphisms (SNPs) were identified from consensus contigs. Interestingly, many contigs with significantly high frequencies of indels or SNPs encode transcription factors and protein kinases. In a comparison with six model plant species, cotton ESTs show the highest overall similarity to grape. A total of 87 cotton miRNAs were identified; 59 of these have not been reported previously from experimental or bioinformatics investigations. We also predicted 3,260 genes as miRNAs targets, which are associated with multiple biological functions, including stress response, metabolism, hormone signal transduction and fiber development. We identified 151 and 4,214 EST-simple sequence repeats (SSRs) from contigs and raw ESTs respectively. To make these data widely available, and to facilitate access to EST-related genetic information, we integrated our results into a comprehensive, fully downloadable web-based cotton EST database (www.leonxie.com)

    Employing machine learning for reliable miRNA target identification in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions.</p> <p>Result</p> <p>In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like <it>Arabidopsis</it>, <it>Medicago</it>, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version.</p> <p>Conclusion</p> <p>A machine learning multivariate feature tool has been implemented in parallel and locally installable form, for plant miRNA target identification. The performance was assessed and compared through comprehensive testing and benchmarking, suggesting a reliable performance and gross usability for transcriptome wide plant miRNA target identification.</p

    Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus

    Get PDF
    The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish

    A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many plant species have been investigated in the last years for the identification and characterization of the corresponding miRNAs, nevertheless extensive studies are not yet available on barley (at the time of this writing). To extend and to update information on miRNAs and their targets in barley and to identify candidate polymorphisms at miRNA target sites, the features of previously known plant miRNAs have been used to systematically search for barley miRNA homologues and targets in the publicly available ESTs database. Matching sequences have then been related to Unigene clusters on which most of this study was based.</p> <p>Results</p> <p>One hundred-fifty-six microRNA mature sequences belonging to 50 miRNA families have been found to significantly match at least one EST sequence in barley. As expected on the basis of phylogenetic relations, miRNAs putatively orthologous to those of <it>Triticum </it>are significantly over-represented inside the set of identified barley microRNA mature sequences. Many previously known and several putatively new miRNA/target pairs have been identified. When the predicted microRNA targets were grouped into functional categories, biological processes previously known to be regulated by miRNAs, such as development and response to biotic and abiotic stress, have been highlighted and most of the target molecular functions were related to transcription regulation. Candidate microRNA coding genes have been reported and genetic variation (SNPs/indels) both in functional regions of putative miRNAs (mature sequence) and at miRNA target sites has been found.</p> <p>Conclusions</p> <p>This study has provided an update of the information on barley miRNAs and their targets representing a foundation for future studies. Many of previously known plant microRNAs have homologues in barley with expected important roles during development, nutrient deprivation, biotic and abiotic stress response and other important physiological processes. Putative polymorphisms at miRNA target sites have been identified and they can represent an interesting source for the identification of functional genetic variability.</p
    corecore