17 research outputs found
Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing
Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)—the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members
Construction task allocation through the collective perception of a dynamic environment
Building structures is a remarkable collective process but its automation remains an open challenge. Robot swarms provide a promising solution to this challenge. However, collective construction involves a number of difficulties regarding efficient robots allocation to the different activities, particularly if the goal is to reach an optimal construction rate. In this paper, we study an abstract construction scenario, where a swarm of robots is engaged in a collective perception process to estimate the density of building blocks around a construction site. The goal of this perception process is to maintain a minimum density of blocks available to the robots for construction. To maintain this density, the allocation of robots to the foraging task needs to be adjusted such that enough blocks are retrieved. Our results show a robust collective perception that enables the swarm to maintain a minimum block density under different rates of construction and foraging. Our approach leads the system to stabilize around a state in which the robots allocation allows the swarm to maintain a tile density that is close to or above the target minimum.info:eu-repo/semantics/publishedDorigo, M. Stützle, T. Blesa, M. J. Blum, C. Hamann, H. Heinrich, M. K. & Strobel, V. (2020). Swarm Intelligence: 12th International Conference, ANTS 2020, Barcelona, Spain, October 26-28, 2020, Proceedings. Cham: Springer International Publishing AG
Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae
International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation
Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies
The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health
The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera)
International audienceDespite growing concerns over the impacts of agricultural pesticides on honey bee health, miticides (a group of pesticides used within hives to kill bee parasites) have received little attention. We know very little about how miticides might affect bee cognition, particularly in interaction with other known stressors, such as crop insecticides. Visual learning is essential for foraging bees to find their way to flowers, recognize them, and fly back to the nest. Using a standardized aversive visual conditioning assay, we tested how field exposure to three pesticides affects visual learning in European honey bees (Apis mellifera). Our pesticides were two common miticides, thymol in the commercial formulation Apiguard® and tau-fluvalinate in the formulation Apistan® and one neonicotinoid, imidacloprid. We found no effect of miticides alone, nor of field-relevant doses of imidacloprid alone, but bees exposed to both thymol and imidacloprid showed reduced performance in the visual learning assay
A levels-of-selection approach to evolutionary individuality
What changes when an evolutionary transition in individuality takes place? Many different answers have been given, in respect of different cases of actual transition, but some have suggested a general answer: that a major transition is a change in the extent to which selection acts at one hierarchical level rather than another. The current paper evaluates some different ways to develop this general answer as a way to characterise the property ‘evolutionary individuality’; and offers a justification of the option taken in Clarke (J Philos 110(8):413–435, 2013)—to define evolutionary individuality in terms of an object’s capacity to undergo selection at its own level. In addition, I suggest a method by which the property can be measured and argue that a problem which is often considered to be fatal to that method—the problem of ‘cross-level by-products’—can be avoided