457 research outputs found

    Bariatric surgery and brain health: A longitudinal observational study investigating the effect of surgery on cognitive function and gray matter volume

    Get PDF
    Dietary modifications leading to weight loss have been suggested as a means to improve brain health. In morbid obesity, bariatric surgery (BARS)—including different procedures, such as vertical sleeve gastrectomy (VSG), gastric banding (GB), or Roux-en-Y gastric bypass (RYGB) surgery—is performed to induce rapid weight loss. Combining reduced food intake and malabsorption of nutrients, RYGB might be most effective, but requires life-long follow-up treatment. Here, we tested 40 patients before and six months after surgery (BARS group) using a neuropsychological test battery and compared them with a waiting list control group. Subsamples of both groups underwent structural MRI and were examined for differences between surgical procedures. No substantial differences between BARS and control group emerged with regard to cognition. However, larger gray matter volume in fronto-temporal brain areas accompanied by smaller volume in the ventral striatum was seen in the BARS group compared to controls. RYGB patients compared to patients with restrictive treatment alone (VSG/GB) had higher weight loss, but did not benefit more in cognitive outcomes. In sum, the data of our study suggest that BARS might lead to brain structure reorganization at long-term follow-up, while the type of surgical procedure does not differentially modulate cognitive performance

    Dentate Gyrus Volume Mediates the Effect of Fornix Microstructure on Memory Formation in Older Adults

    Get PDF
    Age-related deterioration in white and gray matter is linked to cognitive deficits. Reduced microstructure of the fornix, the major efferent pathway of the hippocampus, and volume of the dentate gyrus (DG), may cause age-associated memory decline. However, the linkage between these anatomical determinants and memory retrieval in healthy aging are poorly understood. In 30 older adults, we acquired diffusion tensor and T1-weighted images for individual deterministic tractography and volume estimation. A memory task, administered outside of the scanner to assess retrieval of learned associations, required discrimination of previously acquired picture-word pairs. The results showed that fornix fractional anisotropy (FA) and left DG volumes were related to successful retrieval. These brain-behavior associations were observed for correct rejections, but not hits, indicating specificity of memory network functioning for detecting false associations. Mediation analyses showed that left DG volume mediated the effect of fornix FA on memory (48%), but not vice versa. These findings suggest that reduced microstructure induces volume loss and thus negatively affects retrieval of learned associations, complementing evidence of a pivotal role of the fornix in healthy aging. Our study offers a neurobehavioral model to explain variability in memory retrieval in older adults, an important prerequisite for the development of interventions to counteract cognitive decline

    Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    Get PDF
    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to- middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials

    Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes

    Get PDF
    The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. Twenty healthy elderly adults were assessed in a crossover shamcontrolled design using functional magnetic resonance imaging (fMRI) and concurrent transcranial DCS administered to the left inferior frontal gyrus. Effects on performance and task-related brain activity were evaluated during overt semantic word generation, a task that is negatively affected by advanced age. Task-absent resting-state fMRI (RS-fMRI) assessed atDCS-induced changes at the network level independent of performance. Twenty matched younger adults served as controls. During sham stimulation, task-related fMRI demonstrated that enhanced bilateral prefrontal activity in older adults was associated with reduced performance. RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future

    Role of Sensorimotor Cortex in Gestural-Verbal Integration

    Get PDF
    Action comprehension that is related to language or gestural integration has been shown to engage the motor system in the brain, thus providing preliminary evidence for the gestural-verbal embodiment concept. Based on the involvement of the sensorimotor cortex (M1) in language processing, we aimed to further explore its role in the cognitive embodiment necessary for gestural-verbal integration. As such, we applied anodal (excitatory) and sham transcranial direct current stimulation (tDCS) over the left M1 (with reference electrode over the contralateral supraorbital region) during a gestural-verbal integration task where subjects had to make a decision about the semantic congruency of the gesture (prime) and the word (target). We used a cross-over within-subject design in young subjects. Attentional load and simple reaction time (RT) tasks served as control conditions, applied during stimulation (order of three tasks was counterbalanced). Our results showed that anodal (atDCS) compared to sham tDCS (stDCS) reduced RTs in the gestural-verbal integration task, specifically for incongruent pairs of gestures and verbal expressions, with no effect on control task performance. Our findings provide evidence for the involvement of the sensorimotor system in gestural-verbal integration performance. Further, our results suggest that functional modulation induced by sensorimotor tDCS may be specific to gestural-verbal integration. Future studies should now evaluate the modulatory effect of tDCS on semantic congruency by using tDCS over additional brain regions and include assessments of neural connectivity

    A Pooled Data Analysis from Three Research Labs

    Get PDF
    Paired associative stimulation (PAS) is a widely used transcranial magnetic stimulation (TMS) paradigm to non-invasively induce synaptic plasticity in the human brain in vivo. Altered PAS-induced plasticity has been demonstrated for several diseases. However, researchers are faced with a high inter- and intra- subject variability of the PAS response. Here, we pooled original data from nine PAS studies from three centers and analyzed the combined dataset of 190 healthy subjects with regard to age dependency, the role of stimulation parameters and the effect of different statistical methods. We observed no main effect of the PAS intervention over all studies (F(2;362) = 0.44; p = 0.644). The rate of subjects showing the expected increase of motor evoked potential (MEP) amplitudes was 53%. The PAS effect differed significantly between studies as shown by a significant interaction effect (F(16;362) = 1.77; p = 0.034) but post-hoc testing did not reveal significant effects after correction for multiple tests. There was a trend toward increased variability of the PAS effect in older subjects. Acquisition parameters differed across studies but without systematically influencing changes in MEP-size. The use of post/baseline quotients systematically indicated stronger PAS effects than post/baseline difference or the logarithm of the post/baseline quotient. The non-significant PAS effects across studies and a wide range of responder rates between studies indicate a high variability of this method. We were thus not able to replicate findings from a previous meta-analysis showing robust effects of PAS. No pattern emerged regarding acquisition parameters that at this point could guide future studies to reduce variability and help increase response rate. For future studies, we propose to report the responder rate and recommend the use of the logarithmized post/baseline quotient for further analyses to better address the possibility that results are driven by few extreme cases

    Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary

    Get PDF
    Introduction: Recently, growing interest emerged in the enhancement of human potential by means of non-invasive brain stimulation. In particular, anodal transcranial direct current stimulation (atDCS) has been shown to exert beneficial effects on motor and higher cognitive functions. However, the majority of transcranial direct current stimulation (tDCS) studies have assessed effects of single stimulation sessions that are mediated by transient neural modulation. Studies assessing the impact of multiple stimulation sessions on learning that may induce long-lasting behavioural and neural changes are scarce and have not yet been accomplished in the language domain in healthy individuals

    Weight loss reduces head motion: Re-visiting a major confound in neuroimaging

    No full text
    Head motion during magnetic resonance imaging (MRI) induces image artifacts that affect virtually every brain measure. In parallel, cross‐sectional observations indicate a correlation of head motion with age, psychiatric disease status and obesity, raising the possibility of a systematic artifact‐induced bias in neuroimaging outcomes in these conditions, due to the differences in head motion. Yet, a causal link between obesity and head motion has not been tested in an experimental design. Here, we show that a change in body mass index (BMI) (i.e., weight loss after bariatric surgery) systematically decreases head motion during MRI. In this setting, reduced imaging artifacts due to lower head motion might result in biased estimates of neural differences induced by changes in BMI. Overall, our finding urges the need to rigorously control for head motion during MRI to enable valid results of neuroimaging outcomes in populations that differ in head motion due to obesity or other conditions

    Hippocampal Pathway Plasticity Is Associated with the Ability to Form Novel Memories in Older Adults

    Get PDF
    White matter deterioration in the aging human brain contributes to cognitive decline. The fornix as main efferent hippocampal pathway is one of the tracts most strongly associated with age-related memory impairment. Its deterioration may predict conversion to Alzheimer’s dementia and its precursors. However, the associations between the ability to form novel memories, fornix microstructure and plasticity in response to training have never been tested. In the present study, 25 healthy older adults (15 women; mean age (SD): 69 (6) years) underwent an object-location training on three consecutive days. Behavioral outcome measures comprised recall performance on the training days, and on 1-day and 1-month follow up assessments. MRI at 3 Tesla was assessed before and after training. Fornix microstructure was determined by fractional anisotropy and mean diffusivity (MD) values from diffusion tensor imaging (DTI). In addition, hippocampal volumes were extracted from high-resolution images; individual hippocampal masks were further aligned to DTI images to determine hippocampal microstructure. Using linear mixed model analysis, we found that the change in fornix FA from pre- to post-training assessment was significantly associated with training success. Neither baseline fornix microstructure nor hippocampal microstructure or volume changes were significantly associated with performance. Further, models including control task performance (auditory verbal learning) and control white matter tract microstructure (uncinate fasciculus and parahippocampal cingulum) did not yield significant associations. Our results confirm that hippocampal pathways respond to short-term cognitive training, and extend previous findings by demonstrating that the magnitude of training-induced structural changes is associated with behavioral success in older adults. This suggests that the amount of fornix plasticity may not only be behaviorally relevant, but also a potential sensitive biomarker for the success of training interventions aimed at improving memory formation in older adults, a hypothesis to be evaluated in future studies

    Altered paired associative stimulation-induced plasticity in NMDAR encephalitis

    Get PDF
    Objective: To determine whether neurophysiological mechanisms indicating cortical excitability, long-term potentiation (LTP)-like plasticity, GABAergic and glutamatergic function are altered in patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis and whether they can be helpful as markers of diagnostic assessment, disease progression, and potentially therapy response. Methods: Neurophysiological characterizations of patients with NMDAR encephalitis (n = 34, mean age: 28 ± 11 years; 30 females) and age/gender-matched healthy controls (n = 27, 28.5 ± 10 years; 25 females) were performed using transcranial magnetic stimulation-derived protocols including resting motor threshold, recruitment curve, intracortical facilitation, short intracortical inhibition, and cortical silent period. Paired associative stimulation (PAS) was applied to assess LTP-like mechanisms which are mediated through NMDAR. Moreover, resting state functional connectivity was determined using functional magnetic resonance imaging. Results: PAS-induced plasticity differed significantly between groups (P = 0.0056). Cortical excitability, as assessed via motor-evoked potentials after PAS, decreased in patients, whereas it increased in controls indicating malfunctioning of NMDAR in encephalitis patients. Lower PAS-induced plasticity significantly correlated with the modified Rankin Scale (mRS) (r = −0.41; P = 0.0031) and was correlated with lower functional connectivity within the motor network in NMDAR encephalitis patients (P < 0.001, uncorrected). Other neurophysiological parameters were not significantly different between groups. Follow-up assessments were available in six patients and demonstrated parallel improvement of PAS-induced plasticity and mRS. Interpretation: Assessment of PAS-induced plasticity may help to determine NMDAR dysfunction and disease severity in NMDAR encephalitis, and might even aid as a sensitive, noninvasive, and well-tolerated “electrophysiological biomarker” to monitor therapy response in the future.Clinical Trial Registration: ClinicalTrials.gov: Identifier: NCT0186557
    • 

    corecore