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Abstract
Paired associative stimulation (PAS) is a widely used transcranial magnetic stimulation

(TMS) paradigm to non-invasively induce synaptic plasticity in the human brain in vivo.

Altered PAS-induced plasticity has been demonstrated for several diseases. However,

researchers are faced with a high inter- and intra-subject variability of the PAS response.

Here, we pooled original data from nine PAS studies from three centers and analyzed the

combined dataset of 190 healthy subjects with regard to age dependency, the role of stimula-

tion parameters and the effect of different statistical methods. We observed nomain effect of

the PAS intervention over all studies (F(2;362) = 0.44; p = 0.644). The rate of subjects show-

ing the expected increase of motor evoked potential (MEP) amplitudes was 53%. The PAS

effect differed significantly between studies as shown by a significant interaction effect (F

(16;362) = 1.77; p = 0.034) but post-hoc testing did not reveal significant effects after correc-

tion for multiple tests. There was a trend toward increased variability of the PAS effect in older

subjects. Acquisition parameters differed across studies but without systematically influenc-

ing changes in MEP-size. The use of post/baseline quotients systematically indicated stron-

ger PAS effects than post/baseline difference or the logarithm of the post/baseline quotient.

The non-significant PAS effects across studies and a wide range of responder rates between

studies indicate a high variability of this method. We were thus not able to replicate findings

from a previous meta-analysis showing robust effects of PAS. No pattern emerged regarding

acquisition parameters that at this point could guide future studies to reduce variability and

help increase response rate. For future studies, we propose to report the responder rate and

recommend the use of the logarithmized post/baseline quotient for further analyses to better

address the possibility that results are driven by few extreme cases.
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Introduction
Neuronal plasticity is the basis of learning and memory and leads to changes on a molecular,
cellular and systemic level. On the synaptic level, long-term potentiation (LTP) and depression
(LTD) are omnipresent mechanisms of neuronal plasticity. This bidirectional synaptic plastic-
ity can be induced by tetanic stimulation at high (LTP) or low (LTD) frequencies or by associa-
tive pre- and postsynaptic stimulation and characteristically depends on the activity of
postsynaptic NMDA receptors [1]. LTP/LTD have been studied extensively in animal tissue
slices [2], and also in surgically removed human hippocampus specimens [3]. However, it can-
not be assessed in the human brain in vivo.

Paired-associative stimulation (PAS) is one of the most frequently used transcranial mag-
netic stimulation (TMS) protocols to non-invasively induce neural plasticity in the intact
human brain [4–6]. For PAS, electrical stimulation of a peripheral nerve (e.g. median nerve)
and TMS of the contralateral primary motor cortex (M1) are repetitively coupled. Depending
on the exact timing of the stimuli, this leads to an increase or decrease of motor evoked poten-
tials (MEP). At an interstimulus-interval of 25 ms, MEP amplitudes are increased, and at an
interstimulus interval of 10 ms, the amplitudes are decreased [5]. MEP amplitude changes have
been shown to begin directly after PAS intervention and to last for a duration of at least one
hour [4,6].

Experimental paradigms that induce neural plasticity in the intact human brain are often
referred to as „LTP-like”as they share some but not all characteristics with LTP and as the
underlying mechanisms are not completely understood. For PAS, three requirements for an
LTP-like mechanism, namely stimulus-timing dependence [5], NMDA-receptor dependence
[7] and associativity [4] have been demonstrated.

A large scale quantitative review provided strong indication for a robust PAS effect which
was strongest for an inter-trial interval of 5 or 20 s [6]. On the other hand, a high inter-individ-
ual variability and a response to PAS in the expected direction in only 60% and even 39% of
participants found in two well powered studies challenge such conclusions [8,9]. Small effect
sizes and a high variability have recently been reported not only for PAS but also for other
methods of non-invasive brain stimulation and are intensively debated [10,11]. Despite that,
systematic alterations of PAS have been demonstrated in a variety of neuropsychiatric disor-
ders, including Alzheimer’s disease [12,13], depression [14], schizophrenia [15] or writer’s
cramp [16].

Previous studies identified several factors such as age [8], time of day [17], attention [18] or
cortical anatomy [19] to account for some of its variability, but these were not necessarily repli-
cated and even small changes in the parameter sets may impact the results substantially. There
is not yet a consensus if optical navigation for TMS coil placement has a positive effect on the
variability of MEPs [20–22]. Other factors include the strength of the peripheral electrical stim-
ulation which affects the number of stimulated afferent fibers as well as the strength of the cor-
tical stimulation as this will influence the number of I-waves [23]. One study [8] found that a
lower stimulator output necessary to induce a 1mVMEP correlated with a stronger PAS effect.

Finally, the choice of data analysis methods and statistical analyses also influences the
results. This concerns the averaging across the individual trials of a participant at a given time
point (e.g. at baseline or at various intervals after the PAS-intervention) and the averaging
across individuals for each time point but also the transformations (post/baseline differences,
quotients, or logarithmized quotients). The majority of studies relies on post/baseline differ-
ences for analysis of the main PAS effect by using ANOVA, and on quotients for further analy-
ses such as e.g. correlations.
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Our own experience [24–30] and that of others [8,9] with PAS but also relatively well pow-
ered studies using other means for non-invasive brain stimulation [19,31] led us to perform a
meta-analysis on original data for comparison to the recent review by Wischnewski and col-
leagues [6]. These authors reported that the PAS protocol remained robust even after removing
studies with potential overestimation of effect size. On the other hand, their analysis had to be
based on published data while ample evidence indicate that studies with a null effect tend to
remain unpublished [32].

We therefore performed a meta-analysis based on our original published and unpublished
data from nine studies performed by two TMS research groups at three different laboratories.
We aimed at evaluating the robustness of the PAS effect. In addition, we sought to quantify the
influence of stimulation parameters, age, gender and statistical methods in the analysis of PAS.
We additionally tested for associations between the extend of the PAS effect and age as well as
magnetic stimulation strength as both has been indicated in a previous study [8]. Finally, we
also examined correlations between PAS and the peripheral electrical stimulation strength.

Methods

Subjects
Healthy control subjects from nine studies conducted at three German centers (Charité Uni-
versitätsmedizin Berlin, University Medical Center Münster, University Medical Center Frei-
burg) were included in this study (Table 1). The studies were approved by the respective local
ethics commissions (Ethik-Kommission der Albert-Ludwigs-Universität Freiburg for studies A
& B, Ethik-Kommission der Ärztekammer Westfalen-Lippe und der Westfälischen Wilhelms-
Universität Münster for studies C & D, Ethikkommission der Charité Universitätsmedizin Ber-
lin for Studies E—I) and all participants gave their written informed consent.

PAS acquisition protocols
The differences of the experimental procedures of the included studies are outlined in Table 2.

Data Processing and Statistical Analysis
The mean MEP size was calculated for each time-point (baseline and post-measurements) and
for each subject. Testing MEPs for normality using Shapiro-Wilks test indicated no normal dis-
tribution. A repeated measures analysis of variance (rmANOVA) was calculated using SPSS
software (Version 22.0) with the factor TIME (three levels: before PAS (pre), directly after PAS

Table 1. Summary of subjects and studies.

study center age (years) gender (f/m) N Responder rate initially published in

A Freiburg 69.6 ± 5.7 19/9 28 53.6% (15) Lahr et al. [30]

B Freiburg 24.0 ± 2.0 14/18 32 62.5% (20) Klöppel et al. [29]

C Münster 49.9 ± 8.3 8/4 12 16.7% (2) List et al. [24]

D Münster 70.5 ± 3.6 10/10 20 80% (16) List et al. [26]

E Berlin 63.6 ± 12.8 4/6 10 60% (6) List et al. [28]

F Berlin 65.3 ± 5.2 12/8 20 35% (7) Unpublished

G Berlin 63.9 ± 6.2 16/14 30 60% (18) List et al. [27]

H Berlin 25.8 ± 5.9 2/21 23 52.2% (12) Unpublished

I Berlin 64.3 ± 6.1 7/8 15 33.3% (5) Unpublished

∑ 92/98 190

doi:10.1371/journal.pone.0154880.t001
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(post0) and 15 min after PAS (post15) as these measurements were available in all studies) as
repeated measures factor and STUDY (nine levels) as between subjects factor. In case of a sig-
nificant interaction, Games-Howell correction was applied to post-hoc testing. Degrees of free-
dom were adjusted by the Huynh-Feldt method, when the assumption of sphericity was
violated.

Three different data transformations of the baseline and averaged post MEP measurements
were compared: the difference between post and baseline (PASdiff), the post/baseline quotient
(PASquot), and the logarithm of the quotient (PASlogquot).

A random-effects regression model was fitted to each of the transformed data sets using the
metafor library in R [33] and heterogeneity between studies was assessed with Cochrane’s Q-
test. Results are displayed using a Forest plot.

Table 2. Methodological differences in the PAS paradigm between the studies.

Study A & B C & D E F G H I

PAS 180 paired stimuli,
interval of 5 s,
interstimulus interval
of 25 ms between
electrical and
magnetic stimulus

90 paired stimuli,
interval of 20 s,
ISI 25 ms
between electrical
and magnetic
stimulus

132 paired
stimuli, interval
of 5 s, ISI 25 ms
between
electrical and
magnetic
stimulus

132 paired stimuli,
interval of 5 s, ISI
25 ms between
electrical and
magnetic stimulus

132 paired
stimuli, interval
of 5 s, ISI 25 ms
between
electrical and
magnetic
stimulus

132 paired
stimuli, interval of
5 s, ISI 25 ms
between
electrical and
magnetic
stimulus

132 paired stimuli,
interval of 5 s, ISI
25 ms between
electrical and
magnetic stimulus

TMS TMS adjusted to 1
mV unconditioned
MEP amplitude.20
MEPs per condition.
Post measurements
at 0, 8 and 15
minutes post
intervention.

TMS 0.5–1.0 mV
interval 10 s, 20
MEPs per
condition. Post
measurements at
0, 15, 30 (60 min
for study C) post
intervention.

TMS 0.5–1.0
mV; 10 MEPs
per condition;
post
measurements
at 0, 15, 30 post
intervention.

TMS 0.5–1.0 mV;
10 MEPs per
condition; post
measurements at
0, 15, 30 post
intervention.

TMS 0.5–1.0
mV; 10 MEPs
per condition;
post
measurements
at 0, 15, 30 post
intervention.

TMS 0.5–1.0 mV;
10 MEPs per
condition; post
measurements at
0, 15, 30 post
intervention.

TMS 0.5–1.0 mV;
10 MEPs per
condition; post
measurements at
0, 15, 30 post
intervention.

E-Stim 300% of perception
threshold at median
nerve

300% perception
threshold at ulnar
nerve

300% of
perception
threshold at
median nerve

300% perception
threshold at
median nerve
(some participants
did not tolerate
stimulation at
300% perception
threshold, there
the stimulation
intensity was
adjusted
individually (mean
273%), a visible
twitch of the
thumb was
required)

300% of
perception
threshold at
median nerve

300% of
perception
threshold at
median nerve

300% perception
threshold at
median nerve
(some participants
did not tolerate
stimulation at
300% perception
threshold, there
the stimulation
intensity was
adjusted
individually (mean
277%), a visible
twitch of the
thumb was
required)

Muscle APB (right Hand,
only right handed
subjects)

ADM (dominant
hand)

APB (right Hand,
only right handed
subjects)

APB (right Hand,
only right handed
subjects)

APB (right Hand,
only right handed
subjects)

APB (right Hand,
only right handed
subjects)

APB (right Hand,
only right handed
subjects)

Other Neuronavigation,
Attention monitored
by counting visual
stimuli Experiment
conducted in the
afternoon.

Experiment
conducted
between 10 AM
and 3 PM
Attention
monitored by
counting number
of ulnar nerve
stimulations

Experiment
conducted
between 9 AM
and 6 PM
Attention
monitored by
counting number
of ulnar nerve
stimulations

Experiment
conducted
between 9 AM
and 6 PM
Attention
monitored by
counting number
of median nerve
stimulations

Experiment
conducted
between 9 AM
and 5 PM
Attention
monitored by
counting number
of ulnar nerve
stimulations

doi:10.1371/journal.pone.0154880.t002

Effects of Different Analysis Strategies on Paired Associative Stimulation

PLOS ONE | DOI:10.1371/journal.pone.0154880 May 4, 2016 4 / 11



For calculation of the responder-rate, the quotient of the averaged post measurements and
the baseline measurement effect was calculated [8]. Subjects attaining values above one were
thus considered as PAS-responders. Rank based correlation (Spearman’s rho) between age,
TMS intensity (in percent of maximal stimulator output: %MSO), electrical peripheral nerve
stimulation intensity (mA), PASlogquot and |PASlogquot| was calculated. Following the approach
by Müller Dahlhaus et al. (2008) association between age and the absolute variability (i.e. MEP
increases or decreases) induced by PAS was assessed by correlating |PASlogquot| with age using
Spearmans’s rho. Association between gender and PASlogquot and between inter-trial interval
(5 s or 20 s) and PASlogquot were assessed using point-biserial correlation which is equivalent to
a t-test but directly provides a measure of effect size.

To assess the influence of different data transformations, we visualized MEPs relative to
baseline from all participants displaying the mean from all participants of a given timepoint
and study. This visualization was contrasted with a visualization where the mean and the stan-
dard error were calculated on the logarithmized data. To further underline the influence of dif-
ferent averaging methods, we also visualized the mean, the median, and the mean of the log-
transformed data that was back transformed to linear space using the following formula:

log transformed data ¼ 10meanðlog10ðdataÞÞ

Results
Data from PAS experiments of nine different studies were analyzed using an rmANOVA on
the baseline, post0, and post15 measurements (Tables 1 and 2). There was no main effect of
TIME over all studies (F(2;362) = 0.44; p = 0.644; Table 3) while the main effect of STUDY was
significant (F(8;181) = 2.04; p = 0.044; Table 3). The overall responder rate was 53.2% (101 out
of 190 subjects). The interaction TIME x STUDY was significant (F(16;362) = 1.77; p = 0.034;
Table 3) but post-hoc testing did not reveal significant effects after correction for multiple test-
ing (Games-Howell procedure; minimal p-value = 0.256). Responder rates for the individual
studies were between 16.7–80% (Table 1).

None of the three random-effects meta-analyses indicated an overall effect of PAS. The
model based on the post/pre quotients indicated a (not significantly) higher effect of PAS
(PASquot: 1.11 ± 0.08; S1 Fig), while the models based on the differences (PASdiff: 0.02 ± 0.06
mv; S2 Fig) and logarithmized quotients (PASlogquot: 0.01 ± 0.03; Fig 1) indicated comparable
results. Heterogeneity as assessed by Cochrane’s Q was significant at a level p<0.001 for all
three models.

There was a trend towards a positive association between variability of PASlogquot and age
(rho = 0.13; p = 0.068; Fig 2), and no significant correlation between PASlogquot and age
(rho = 0.07; p = 0.308; Fig 2), electrical peripheral nerve stimulation intensity (rho = -0.15;
p = 0.091, Fig 3, left panel) and TMS intensity (rho = -0.01; p = 0.897, Fig 3, right panel) or var-
iability of PASlogquot and electrical peripheral nerve stimulation intensity (rho = -0.01;
p = 0.139) and TMS intensity (rho = 0.04; p = 0.689). There was also no significant association
between PASlogquot and gender (r = 0.01; p = 0.851), the use of neuronavigation (r = 0.01;

Table 3. PAS effect over time. Results from rmANOVA over all studies (measurements at baseline, post0 and post15). Bold letters indicate significant
effects.

Study Term F (df) P responder rate

All studies TIME 0.44 (2;362) 0.644 53.2% (101/190)

All studies STUDY 2.04 (1; 181) 0.044

All studies TIME x STUDY 1.77 (16;362) 0.034

doi:10.1371/journal.pone.0154880.t003
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p = 0.923) or the inter-trial interval during the PAS intervention (5 s vs. 20 s; r = 0.09;
p = 0.239).

The left panel of Fig 4 displays the PAS effect relative to baseline with means and SEM cal-
culated across all studies indicating relatively high MEP values and a strong effect of outliers.
In contrast, data in the right panel were log-transformed before calculating the means and
SEM.

The influence of different methods to estimate the average PAS response was further assessed
by comparing the mean of the raw data to the median and the back-transformed mean of the
logarithmized data. The mean yielded the highest values in 17 out of 19 cases (Fig 5).

Discussion
Integrating original data from almost 200 subjects, we did not observe a significant effect of
PAS (i.e. TIME) but found that the PAS effect differed significantly between studies. However,
post-hoc testing did not reveal differences between individual studies after correction for multi-
ple comparisons. The wide range of responder rates together with the differences of the PAS
effect between studies argue for a high variability. The results of our study are therefore differ-
ent from a recent quantitative review showing robust PAS effects across all examined post PAS
intervals [6]. Although that study did not access original data from individual subjects, they
integrated data from 60 individual studies and made an effort to ensure that results of their
meta-analyses were not driven by a number of small scale studies that would report unrealisti-
cally large effect-sizes.

Our data were acquired at three sites by two TMS research groups. Although both teams
were working independently from each other at the time of data acquisition, we cannot fully

Fig 1. Forest plot of PAS-effect calculated with the logarithmized MEP ratio between the averaged
post measurements and baseline (PASlogquot). The right column lists the corresponding mean and 95%
confidence interval for the individual studies, below the estimated effect across all studies is indicated.

doi:10.1371/journal.pone.0154880.g001

Fig 2. Association between PASlogquot (left panel), variability induced by PASlogquot (|PASlogquot|, right
panel) and age. Letters indicate separate studies (see Table 1).

doi:10.1371/journal.pone.0154880.g002
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exclude the possibility that both teams performed the PAS intervention incorrectly. However,
well powered single studies by other research groups with ample experience in neurophysiol-
ogy [8,9] also found no evidence for a robust PAS effect, and overall low responder rates.

In line with previous findings [8], we found no association between age and the strength of
the PAS effect. In contrast to that study, we did not find a smaller but a higher variability of the
MEP after PAS with increasing age. Of note, we did not examine a continuous sample across
the whole age range and especially middle aged subjects (i.e. 30–50 years old) are underrepre-
sented in the study sample. Between-study differences could therefore influence age effects.
There was also no correlation between the strength of the PAS effect and gender, in line with
recent work [34]. In additional correlation analyses we examined the effect of the strength of
the electrical and magnetic stimulation on the PAS effect and found no significant correlation,
in contrast to [8] who reported stronger PAS effects in those requiring a lower stimulator
strength to induce a 1 mVMEP.

We were unable to evaluate the effect of different TMS vendors which had recently been
suggested [35] as all studies used the same system. In addition, we did not find a systematic dif-
ference between studies with and without a navigation system, findings which add to an ongo-
ing and so far inconclusive debate [20–22].

Importantly, we were able to demonstrate in this meta-analysis that the choice of statistical
analysis has a distinct impact on the results: MEPs are not normally distributed and, further-
more, are by definition positive, implying that outliers systematically lead to an overestimation

Fig 3. Scatter plot displaying the association between PASlogquot and the intensities of peripheral
nerve stimulation (left panel) and TMS (right panel).MSO: maximum stimulator output.

doi:10.1371/journal.pone.0154880.g003

Fig 4. PAS-induced effects.Mean MEP amplitudes following PAS are shown relative to the baseline level.
Each study is represented by a distinct color as in Figs 2 and 3, each circle represents the measurements of
one subject, and each black diamondmarker represents the mean of a study at the given time-point. The
black line with error bars represents the temporal course of PAS across subjects and studies. The dashed red
line represents no change against the baseline measurement. Left panel: normalized data ± SEM. Right
panel: same PAS data but log-transformed prior to calculation of means and SEM. Note that the x-axis
depicts distinct time points rather than a continuous scale.

doi:10.1371/journal.pone.0154880.g004
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of the mean (e.g. single MEP measurements can be above 3 mV, but never below 0 mV). This
effect is further magnified when parametric statistics are applied to MEP values relative to a
baseline measurement as the baseline measurement takes place directly after adjusting stimula-
tion parameters and coil position to acquire stable MEPs with low variability. Small move-
ments or fluctuations of attention may thus have a higher impact on the subsequent post-
measurements. Even if there is no external gold standard to validate the statistical method, the
positive skewness of the data leads us to propose to log-transform the post/baseline quotient
for further statistical processing as this leads to a more normal data distribution and to use
absolute MEP values (baseline- and post-measurements) for a rmANOVA. Although not the
focus of this study, the same arguments can also be applied to data from individual trials for a
given subject and time point where either mean or median can be used to average across trials
and data may already be log-transformed at this stage.

In summary, we demonstrate a high variability of the PAS-protocol leading to an overall
non-significant effect of the intervention. Given this high variability, PAS-results in neurologi-
cal and psychiatric patients should be interpreted with precaution. Conclusions drawn from
single subject experiments do not yet seem to be reliable, and studies with higher patient num-
bers are needed to prove the validity of this paradigm in a clinical context. Detailed description
of acquisition parameters, blinding the subject and the examiner to group status and even stim-
ulation protocol (e.g. by involving a second experimenter who switches between excitatory 25
ms and inhibitory 10 ms intervals), carefully controlling for potential confounders such as age,
gender, attention and a statistical analysis plan robust against outliers seem the best approach
to handle PAS data. Moreover, future should investigate further sources of intra- and intersub-
ject variability as it may have a tractable physiological underpinning. A recent approach to
track down the high variability of noninvasive brain stimulation paradigms is using brain-state
dependent TMS stimulation and thus adjusting the timing of TMS stimulation by real-time
analysis of EEG [36,37]. Brain-state dependent variability of PAS may not only explain discrep-
ancies between PAS studies, but also a high intrasubject variability of PAS [38].

Supporting Information
S1 Fig. Forest plot of PAS-effect calculated with the MEP ratio between the averaged post
measurements and baseline (PASquot). The right column lists the corresponding mean and
95% confidence interval for the individual studies, below the estimated effect across all studies

Fig 5. Comparison of methods to calculate the average PAS response. Each column of diamond
markers represents the different averages of one study: the mean (black), the median (red), and the mean as
calculated on the log-transformed data that was back-transformed to linear space (green). The mean values
are systematically higher than those of the median or those of the mean calculated on the log-transformed
data.

doi:10.1371/journal.pone.0154880.g005
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is indicated.
(TIF)

S2 Fig. Forest plot of PAS-effect calculated with the MEP difference between the averaged
post measurements and baseline (PASdiff). The right column lists the corresponding mean
and 95% confidence interval for the individual studies, below the estimated effect across all
studies is indicated.
(TIF)
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