20 research outputs found

    Comparative phylogeography in the Atlantic forest and Brazilian savannas: pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees

    Get PDF
    Background: Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped the range of local populations and the spatial distribution of intra-specific lineages. Results: Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum. These results are consistent with physiological data suggesting that bumblebees are well adapted to colder conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be explained by their documented differences in dispersal ability. Conclusions: While populations of the high-dispersal B. morio are morphologically and genetically homogeneous across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic, geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the state of São Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis

    The evolutionary significance of ancient genome duplications

    No full text
    Many organisms are currently polyploid, or have a polyploid ancestry and now have secondarily 'diploidized' genomes. This finding is surprising because retained whole-genome duplications (WGDs) are exceedingly rare, suggesting that polyploidy is usually an evolutionary dead end. We argue that ancient genome doublings could probably have survived only under very specific conditions, but that, whenever established, they might have had a pronounced impact on species diversification, and led to an increase in biological complexity and the origin of evolutionary novelties

    Ploidy manipulation and citrus breeding, genetics and genomics

    No full text
    Polyploidy appears to have played a limited role in citrus germplasm evolution. However, today, ploidy manipulation is an important component of citrus breeding strategies. For varieties, the main objective is to develop triploid seedless varieties. For rootstock, the aim is to cumulate interesting traits in tetraploid hybrids and to improve adaptation to biotic and abiotic stresses. In this chapter we make a review of the recent knowledge acquired on the natural mechanisms of citrus polyploidization, and teraploid meiosis. Chromosome doubling of nucellar cells is frequent in apomictic citrus and results in tetraploid seedling production. Unreduced gametes are also frequently produced, mainly by second division restitution for ovules. First division restitution was described for pollen as well as alternative mechanisms for both ovules and pollen. Tetraploid plants display tetrasomic to disomic segregations in relation with their genome structure (autoteraploid versus allotetraploid) and the divergence of the parental species. The implications of the origin of diploid gametes, on the genetic diversity of polyploid progenies, are discussed. The biotechnological tools (haplo-methods, chromosome doubling by chemichal treatments, somatic hybridization and cytogenetic/molecular tools for polyploid genome studies) to optimize ploidy manipulation are presented. The interest of haploids and polyploid genotypes for basic genetic and genomic studies is discussed. The following research area are reviewed: haploids and doubled haploid for genome sequencing and haplotyping, centromere mapping from unreduced gametes, marker-trait association study in polyploids, phenome and gene expression in polyploids with a special focus on polyploidy and adaptation. Finally, we give an overview of the recent advances of concrete polyploid citrus breeding programs in China, Florida and the Mediterranean Basin
    corecore