18 research outputs found

    Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon

    Get PDF
    Background Since its first detection in the Caribbean in late 2013, chikungunya virus (CHIKV) has affected 51 countries in the Americas. The CHIKV epidemic in the Americas was caused by the CHIKV-Asian genotype. In August 2014, local transmission of the CHIKV-Asian genotype was detected in the Brazilian Amazon region. However, a distinct lineage, the CHIKV-East-Central-South-America (ECSA)-genotype, was detected nearly simultaneously in Feira de Santana, Bahia state, northeast Brazil. The genomic diversity and the dynamics of CHIKV in the Brazilian Amazon region remains poorly understood despite its importance to better understand the epidemiological spread and public health impact of CHIKV in the country. Methodology/Principal findings We report a large CHIKV outbreak (5,928 notified cases between August 2014 and August 2018) in Boa vista municipality, capital city of Roraima’s state, located in the Brazilian Amazon region. We generated 20 novel CHIKV-ECSA genomes from the Brazilian Amazon region using MinION portable genome sequencing. Phylogenetic analyses revealed that despite an early introduction of the Asian genotype in 2015 in Roraima, the large CHIKV outbreak in 2017 in Boa Vista was caused by an ECSA-lineage most likely introduced from northeastern Brazil. Epidemiological analyses suggest a basic reproductive number of R0 of 1.66, which translates in an estimated 39 (95% CI: 36 to 45) % of Roraima’s population infected with CHIKV-ECSA. Finally, we find a strong association between Google search activity and the local laboratory-confirmed CHIKV cases in Roraima. Conclusions/Significance This study highlights the potential of combining traditional surveillance with portable genome sequencing technologies and digital epidemiology to inform public health surveillance in the Amazon region. Our data reveal a large CHIKV-ECSA outbreak in Boa Vista, limited potential for future CHIKV outbreaks, and indicate a replacement of the Asian genotype by the ECSA genotype in the Amazon region

    FALSE-NEGATIVE DENGUE CASES IN RORAIMA, BRAZIL: AN APPROACH REGARDING THE HIGH NUMBER OF NEGATIVE RESULTS BY NS1 AG KITS

    Get PDF
    Serum samples from 150 NS1-negative (Platelia ELISA) patients presumptively diagnosed with dengue were analyzed by the TaqMan probed real-time reverse transcription PCR (TaqMan qRT-PCR) method. The qRT-PCR positive samples were tested for serotype by semi-nested RT-PCR and a qualitative immunochromatographic assay for IgG and IgM. Molecular detection methods showed 33 (22%) positive samples out of 150 NS1-antigen negative samples. Of these, 72% were collected up to day 2 after the onset of symptoms, when diagnostic sensitivity of NS1-antigen test assays is significantly enhanced. Most of the cases were not characterized as secondary infection. Twenty-eight samples were successfully serotyped, 75% of which for DENV-4, 14% for DENV-2, 7% for DENV-3 and 4% for DENV-1. These findings reaffirm the hyperendemic situation of the state of Roraima and suggest a lower sensitivity of the NS1 test, mainly when DENV-4 is the predominant serotype. Health care providers should therefore be aware of samples tested negative by NS1 antigen assays, especially when clinical symptoms and other laboratory data results show evidence of dengue infection

    CO-INFECTION OF DENGUE VIRUS BY SEROTYPES 1 AND 4 IN PATIENT FROM MEDIUM SIZED CITY FROM BRAZIL

    Get PDF
    SUMMARY The natural co-infection with dengue virus can occur in highly endemic areas where different serotypes have been observed for many years. We report one case of DENV-1/DENV-4 co-infection in human serum detected by molecular tests. Phylogenetic analysis of the sequences obtained indicated the presence of genotype V and II for DENV-1 and DENV-4, respectively

    FATAL OUTCOME OF INFECTION BY DENGUE 4 IN A PATIENT WITH THROMBOCYTOPENIC PURPURA AS A COMORBID CONDITION IN BRAZIL

    Get PDF
    Dengue is currently a major public-health problem. Dengue virus (DENV) is classified into four distinct serotypes, DENV 1-4. After 28 years of absence, DENV-4 was again detected in Brazil in 2010 in Roraima State, and one year later, the virus was identified in the northern Brazilian states of Amazonas and Pará, followed by Rio de Janeiro and São Paulo. In Minas Gerais, the first confirmed case of DENV-4 occurred in the municipality of Frutal in 2011 and has now been isolated from a growing number of patients. Although DENV-2 is associated with the highest risk of severe forms of the disease and death due to the infection, DENV-4 has also been associated with severe forms of the disease and an increasing risk of hemorrhagic manifestations. Herein, the first fatal case of confirmed DENV-4 in Brazil is reported. The patient was an 11-year-old girl from the municipality of Montes Claros in northern Minas Gerais State, Brazil. She had idiopathic thrombocytopenic purpura as a comorbid condition and presented with a fulminant course of infection, leading to death due to hemorrhagic complications. Diagnosis was confirmed by detection of Dengue-specific antibodies using IgM capture enzyme-linked immunosorbent assay and semi-nested RT-PCR. Primary care physicians and other health-care providers should bear in mind that DENV-4 can also result in severe forms of the disease and lead to hemorrhagic complications and death, mainly when dengue infection is associated with coexisting conditions

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon

    No full text
    Background Since its first detection in the Caribbean in late 2013, chikungunya virus (CHIKV) has affected 51 countries in the Americas. The CHIKV epidemic in the Americas was caused by the CHIKV-Asian genotype. In August 2014, local transmission of the CHIKV-Asian genotype was detected in the Brazilian Amazon region. However, a distinct lineage, the CHIKV-East-Central-South-America (ECSA)-genotype, was detected nearly simultaneously in Feira de Santana, Bahia state, northeast Brazil. The genomic diversity and the dynamics of CHIKV in the Brazilian Amazon region remains poorly understood despite its importance to better understand the epidemiological spread and public health impact of CHIKV in the country. Methodology/Principal findings We report a large CHIKV outbreak (5,928 notified cases between August 2014 and August 2018) in Boa vista municipality, capital city of Roraima’s state, located in the Brazilian Amazon region. We generated 20 novel CHIKV-ECSA genomes from the Brazilian Amazon region using MinION portable genome sequencing. Phylogenetic analyses revealed that despite an early introduction of the Asian genotype in 2015 in Roraima, the large CHIKV outbreak in 2017 in Boa Vista was caused by an ECSA-lineage most likely introduced from northeastern Brazil. Epidemiological analyses suggest a basic reproductive number of R0 of 1.66, which translates in an estimated 39 (95% CI: 36 to 45) % of Roraima’s population infected with CHIKV-ECSA. Finally, we find a strong association between Google search activity and the local laboratory-confirmed CHIKV cases in Roraima. Conclusions/Significance This study highlights the potential of combining traditional surveillance with portable genome sequencing technologies and digital epidemiology to inform public health surveillance in the Amazon region. Our data reveal a large CHIKV-ECSA outbreak in Boa Vista, limited potential for future CHIKV outbreaks, and indicate a replacement of the Asian genotype by the ECSA genotype in the Amazon region.</p
    corecore