75 research outputs found

    Occurrence of Mycotoxin in Farro Samples from Southern Italy

    Get PDF
    The occurrence of nine mycotoxins and of contamination by pre- and postharvest fungal pathogens of cereals was investigated in samples of stored Triticum monococcum L., Triticum dicoccon Schrank (emmer), and Triticum spelta L. (spelt). In Italy, all three species are collectively referred to as farro. The samples examined were harvested in summer 2000 from eight different sites in southern Italy. Conventional fluorimetric and diode array-based high-performance liquid chromatography (HPLC) analyses and HPLC-mass spectrometry analyses were used to identify fumonisin B1 in five samples (up to 70.00 microg/ kg), ochratoxin A in seven samples (up to 4.07 microg/kg), and beauvericin in three samples (up to 4.44 mg/kg). Enniatin B was detected in one sample (30.00 microg/kg), but no zearalenone or fusaproliferin was found. Deoxynivalenol and aflatoxins were not evaluated. The potentially mycotoxigenic fungal species detected were Alternaria alternata, Fusarium proliferatum, Fusarium tricinctum, Penicillium verrucosum, and Penicillium chrysogenum. This is the first report of the natural occurrence of mycotoxins in farro samples

    microwave assisted extraction of ochratoxin a from roasted coffee beans an alternative analytical approach

    Get PDF
    Microwave-assisted extraction (MAE) followed by high performance liquid chromatography (HPLC) with a fluorescent detector (DAD) was used and developed for the quantitative analysis of the mycotoxin ochratoxin A (OTA) in commercial roasted coffee beans. This alternative approach has been compared with the conventional extraction that uses hydrogen carbonate aqueous solution followed by OchraTest immunoaffinity analysis. The effect of two experimental tunable MAE parameters (temperature and pressure) on the extraction efficiency of OTA have been investigated using coffee samples forti?ed at different contamination levels. The optimum extraction conditions were obtained using a temperature of 50 °C and a 500 W microwave power. OTA quantity extracted using MAE was similar to that obtained by conventional extraction from samples fortified at 5, 10, and 100 ng g-1 levels. At a 20 ng g-1 level, MAE was more effective than the conventional method. The MAE setting parameters have been optimized showing both extraction time and solvent consumption have been considerably reduced, retaining high OTA recovery values.</p

    Fumonisin B2 by Aspergillus niger in the grape–wine chain: an additional potential mycotoxicological risk

    Get PDF
    Fumonisins are mycotoxins with cancer-promoting activity and are associated with a number of animal and human diseases. The potential risk of contamination by fumonisin B2 (FB2), although at low levels, has been demonstrated in must and wine. Black aspergilli in general and Aspergillus niger in particular are considered to be the major responsible agents of FB2 contamination in grape and its by-products. Contamination by FB2 therefore is yet another safety concern of grape and wine producers, as ochratoxin A, produced mainly by A. carbonarius, may prove to be a major mycotoxicological problem in the grape–wine chain

    Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy

    Get PDF
    Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy) under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV) and deoxynivalenol (DON) occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming

    Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens

    Get PDF
    Strains of Trichoderma spp. produce numerous bioactive secondary metabolites. The in vitro production and antibiotic activities of the major compounds synthesized by Trichoderma harzianum strains T22 and T39 against Leptosphaeria maculans, Phytophthora cinnamomi and Botrytis cinerea were evaluated. Moreover, the eliciting effect of viable or nonviable biomasses of Rhizoctonia solani, Pythium ultimum or B. cinerea on the in vitro production of these metabolites was also investigated. T22azaphilone, 1-hydroxy-3-methyl-anthraquinone, 1,8-dihydroxy-3-methyl-anthraquinone, T39butenolide, harzianolide, harzianopyridone were purified, characterized and used as standards. In antifungal assays, T22azaphilone and harzianopyridone inhibited the growth of the pathogens tested even at low doses (1-10 mu g per plug), while high concentrations of T39butenolide and harzianolide were needed (> 100 mu g per plug) for inhibition. The in vitro accumulation of these metabolites was quantified by LC/MS. T22azaphilone production was not enhanced by the presence of the tested pathogens, despite its antibiotic activity. On the other hand, the anthraquinones, which showed no pathogen inhibition, were stimulated by the presence of P. ultimum. The production of T39butenolide was significantly enhanced by co-cultivation with R. solani or B. cinerea. Similarly, viable and nonviable biomasses of R. solani or B. cinerea increased the accumulation of harzianopyridone. Finally, harzianolide was not detected in any of the interactions examined. The secondary metabolites analysed in this study showed different levels of antibiotic activity. Their production in vitro varied in relation to: (i) the specific compound; (ii) the phytopathogen used for the elicitation; (iii) the viability of the elicitor; and (iv) the balance between elicited biosynthesis and biotransformation rates. The use of cultures of phytopathogens to enhance yields of Trichoderma metabolites could improve the production and application of novel biopesticides and biofertilizers based on the active compounds instead of the living microbe. This could have a significant beneficial impact on the management of diseases in crop plants

    Metabolic and molecular changes of the phenylpropanoid pathway in tomato (Solanum lycopersicum) lines carrying different Solanum pennellii wild Chromosomal regions

    Get PDF
    Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux towards the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82.These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways towards the biosynthesis of phenolic acids in the pyramided lines. Moreover, analyses here carried out suggest the presence in the introgression regions of novel regulatory proteins, such as one Myb4 detected on chromosome 7 and one bHLH detected in chromosome 12. Overall our data indicates that structural and regulatory genes identified in this study might have a key role for the manipulation of the phenylpropanoid metabolic pathway in tomato fruit

    Conversion of the Mycotoxin Patulin to the Less Toxic Desoxypatulinic Acid by the Biocontrol Yeast Rhodosporidium kratochvilovae Strain LS11

    Get PDF
    Se describe en este artículo el descubrimiento de la degradación de la micotoxina patulina por una levaduraThe infection of stored apples by the fungus Penicillium expansum causes the contamination of fruits and fruit-derived products with the mycotoxin patulin, which is a major issue in food safety. Fungal attack can be prevented by beneficial microorganisms, so-called biocontrol agents. Previous time-course thin layer chromatography analyses showed that the aerobic incubation of patulin with the biocontrol yeast Rhodosporidium kratochvilovae strain LS11 leads to the disappearance of the mycotoxin spot and the parallel emergence of two new spots, one of which disappears over time. In this work, we analyzed the biodegradation of patulin effected by LS11 through HPLC. The more stable of the two compounds was purified and characterized by nuclear magnetic resonance as desoxypatulinic acid, whose formation was also quantitated in patulin degradation experiments. After R. kratochvilovae LS11 had been incubated in the presence of 13C-labeled patulin, label was traced to desoxypatulinic acid, thus proving that this compound derives from the metabolization of patulin by the yeast. Desoxypatulinic acid was much less toxic than patulin to human lymphocytes and, in contrast to patulin, did not react in vitro with the thiol-bearing tripeptide glutathione. The lower toxicity of desoxypatulinic acid is proposed to be a consequence of the hydrolysis of the lactone ring and the loss of functional groups that react with thiol groups. The formation of desoxypatulinic acid from patulin represents a novel biodegradation pathway that is also a detoxification process

    Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells

    Get PDF
    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed

    In vitro bioaccessibility and functional properties of polyphenols from pomegranate peels and pomegranate peels-enriched cookies

    No full text
    Obesity is an urgent social problem and new functional foods providing polyphenols and dietary fibers (DF) may be promising tools to modulate oxidative stress, inflammation and energy homeostasis. Pomegranate peels (PPe) are an agro-industrial by-product containing polyphenols such as ellagitannins (ETs), gallic acid (GA), ellagic acid (EA) and its derivatives (EAs), as well as DF. In this study, PPe enriched cookies (PPeC) were developed, and the bioaccessibility as well as the ability of their polyphenols to exert antioxidant activity along the Gastro-intestinal Tract (GiT) and to modulate digestive enzymes were evaluated in vitro. Data showed that the potential bioaccessibility of ETs was 40% lower from PPeC than PPe whereas EAs' and GA bioaccessibility increased by 93% and 52% for PPeC compared to PPe. The concentration of the polyphenols at each digestion step was associated with the total antioxidant capacity of the potentially bioaccessible material. Moreover the polyphenols released in the simulated duodenal phase upon PPeC digestion exhibited inhibitory activity towards α-glucosidase, α-amylase and lipase, being α-glucosidase > α-amylase > lipase. In conclusion, the data demonstrated that the inclusion of PPe at 7.5% in a bakery product potentially led to a high bioaccessibility of ETs' degradation products (mainly EA and EAs) in the duodenum, with a consequent antioxidant protection along the GiT and modulation of glucose metabolism. Further human studies are warranted to evaluate whether these effects also occur in vivo
    corecore