8,512 research outputs found

    Genotype by environment interaction in sunflower (Helianthus annus L.) to optimize trial network efficiency

    Full text link

    A Co-Doped MnO2 catalyst for Li-CO2 batteries with low overpotential and ultrahigh cyclability.

    Get PDF
    Li-CO2 batteries can not only capture CO2 to solve the greenhouse effect but also serve as next-generation energy storage devices on the merits of economical, environmentally-friendly, and sustainable aspects. However, these batteries are suffering from two main drawbacks: high overpotential and poor cyclability, severely postponing the acceleration of their applications. Herein, a new Co-doped alpha-MnO2 nanowire catalyst is prepared for rechargeable Li-CO2 batteries, which exhibits a high capacity (8160 mA h g−1 at a current density of 100 mA g−1), a low overpotential (≈0.73 V), and an ultrahigh cyclability (over 500 cycles at a current density of 100 mA g−1), exceeding those of Li‐CO2 batteries reported so far. The reaction mechanisms are interpreted depending on in situ experimental observations in combination with density functional theory calculations. The outstanding electrochemical properties are mostly associated with a high conductivity, a large fraction of hierarchical channels, and a unique Co interstitial doping, which might be of benefit for the diffusion of CO2, the reversibility of Li2CO3 products, and the prohibition of side reactions between electrolyte and electrode. These results shed light on both CO2 fixation and new Li-CO2 batteries for energy storage

    Effectiveness of platelet function analysis-guided aspirin and/or clopidogrel therapy in preventing secondary stroke : A systematic review and meta-analysis

    Get PDF
    Antiplatelet medications such as aspirin and clopidogrel are used following thrombotic stroke or transient ischemic attack (TIA) to prevent a recurrent stroke. However, the antiplatelet treatments fail frequently, and patients experience recurrent stroke. One approach to lower the rates of recurrence may be the individualized antiplatelet therapies (antiplatelet therapy modification (ATM)) based on the results of platelet function analysis (PFA). This review was undertaken to gather and analyze the evidence about the effectiveness of such approaches. We searched Medline, CINAHL, Embase, Web of Science, and Cochrane databases up to 7 January 2020. Two observational studies involving 1136 patients were included. The overall effects of PFA-based ATM on recurrent strokes (odds ratio (OR) 1.05; 95% confidence interval (CI) 0.69 to 1.58), any bleeding risk (OR 1.39; 95% CI 0.92 to 2.10) or death hazard from any cause (OR 1.19; 95% CI 0.62 to 2.29) were not significantly different from the standard antiplatelet therapy without ATM. The two studies showed opposite effects of PFA-guided ATM on the recurrent strokes in aspirin non-responders, leading to an insignificant difference in the subgroup meta-analysis (OR 1.59; 95% CI 0.07 to 33.77), while the rates of any bleeding events (OR 1.04; 95% CI 0.49 to 2.17) or death from any cause (OR 1.17; 95% CI 0.41 to 3.35) were not significantly different between aspirin non-responders with ATM and those without ATM. There is a need for large, randomized controlled trials which account for potential confounders such as ischemic stroke subtypes, technical variations in the testing protocols, patient adherence to therapy and pharmacogenetic differences

    Semi-automated feature extraction from RGB images for sorghum panicle architecture GWAS

    Get PDF
    Because structural variation in the inflorescence architecture of cereal crops can influence yield, it is of interest to identify the genes responsible for this variation. However, the manual collection of inflorescence phenotypes can be time-consuming for the large populations needed to conduct GWAS (genome-wide association studies) and is difficult for multi-dimensional traits such as volume. A semi-automated phenotyping pipeline (Toolkit for Inflorescence Measurement, TIM) was developed and used to extract uni- and multi-dimensional features from images of 1,064 sorghum (Sorghum bicolor) panicles from 272 genotypes comprising a subset of the Sorghum Association Panel (SAP). GWAS detected 35 unique SNPs associated with variation in inflorescence architecture. The accuracy of the TIM pipeline is supported by the fact that several of these trait-associated SNPs (TASs) are located within chromosomal regions associated with similar traits in previously published QTL and GWAS analysis of sorghum. Additionally, sorghum homologs of maize (Zea mays) and rice (Oryza sativa) genes known to affect inflorescence architecture are enriched in the vicinities of TASs. Finally, our TASs are enriched within genomic regions that exhibit high levels of divergence between converted tropical lines and cultivars, consistent with the hypothesis that these chromosomal intervals were targets of selection during modern breeding

    ZeroFL: Efficient On-Device Training for Federated Learning with Local Sparsity

    Full text link
    When the available hardware cannot meet the memory and compute requirements to efficiently train high performing machine learning models, a compromise in either the training quality or the model complexity is needed. In Federated Learning (FL), nodes are orders of magnitude more constrained than traditional server-grade hardware and are often battery powered, severely limiting the sophistication of models that can be trained under this paradigm. While most research has focused on designing better aggregation strategies to improve convergence rates and in alleviating the communication costs of FL, fewer efforts have been devoted to accelerating on-device training. Such stage, which repeats hundreds of times (i.e. every round) and can involve thousands of devices, accounts for the majority of the time required to train federated models and, the totality of the energy consumption at the client side. In this work, we present the first study on the unique aspects that arise when introducing sparsity at training time in FL workloads. We then propose ZeroFL, a framework that relies on highly sparse operations to accelerate on-device training. Models trained with ZeroFL and 95% sparsity achieve up to 2.3% higher accuracy compared to competitive baselines obtained from adapting a state-of-the-art sparse training framework to the FL setting.Comment: Published as a conference paper at ICLR 202

    The Effect of Galactic Properties on the Escape Fraction of Ionizing Photons

    Full text link
    The escape fraction, fesc, of ionizing photons from early galaxies is a crucial parameter for determining whether the observed galaxies at z > 6 are able to reionize the high-redshift intergalactic medium. Previous attempts to measure fesc have found a wide range of values, varying from less than 0.01 to nearly 1. Rather than finding a single value of fesc, we clarify through modeling how internal properties of galaxies affect fesc through the density and distribution of neutral hydrogen within the galaxy, along with the rate of ionizing photons production. We find that the escape fraction depends sensitively on the covering factor of clumps, along with the density of the clumped and interclump medium. One must therefore be cautious when dealing with an inhomogeneous medium. Fewer, high-density clumps lead to a greater escape fraction than more numerous low-density clumps. When more ionizing photons are produced in a starburst, fesc increases, as photons escape more readily from the gas layers. Large variations in the predicted escape fraction, caused by differences in the hydrogen distribution, may explain the large observed differences in fesc among galaxies. Values of fesc must also be consistent with the reionization history. High-mass galaxies alone are unable to reionize the universe, because fesc > 1 would be required. Small galaxies are needed to achieve reionization, with greater mean escape fraction in the past.Comment: 27 pages, 8 figures. Accepted to ApJ. v2: Improvements based on referee's comment

    The analysis and fabrication of a novel tin-nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7Si-0.7Mg alloy in acidic and alkali corrosive environments.

    Get PDF
    We present for the first time the analysis and fabrication of a novel Tin-Nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7Si-0.7Mg alloy. This alloy is a novel alloy containing high silicon aluminum alloy extrusion profile which presents excellent mechanical properties as well as broad market prospects. Nevertheless, this kind of material is urgent in need of surface treatment technology. The orthogonal design and single factor tests were applied to optimize for electrolytic coloured technological conditions. By controlling operation conditions, the uniform electrolytic coloured films with different color were obtained. Analysis of microstructure showed that tin particles had been deposited in the coloured film. The coloured films, about 10 mu m thick, were uniform, dense and firmly attached to the substrate. After the coloured samples were maintained at 400AC for 1 h, or quenched from 300AC to room temperature, the coloured films did not change, demonstrating excellent thermostability and thermal shock resistance. Acid and alkali corrosion tests and potentiodynamic polarization showed that corrosion resistance of coloured sample was much better than those of untreated samples. After 240 h neutral salt spray test, protection ratings and appearance ratings of coloured films were Grade 9
    corecore