24 research outputs found

    Outcomes and costs of penetrating trauma injury in England and Wales

    Get PDF
    The official published version of the article can be found at the link below.Background: Penetrating trauma injury is generally associated with higher short-term mortality than blunt trauma, and results in substantial societal costs given the young age of those typically injured. Little information exists on the patient and treatment characteristics for penetrating trauma in England and Wales, and the acute outcomes and costs of care have not been documented and analysed in detail.Methods: Using the Trauma Audit Research Network (TARN) database, we examined patient records for persons aged 18+ years hospitalised for penetrating trauma injury between January 2000 and December 2005. Patients were stratified by injury severity score (ISS).Results: 1365 patients were identified; 16% with ISS 1-8, 50% ISS 9-15, 15% ISS 16-24, 16% ISS 25-34, and 4% with ISS 35-75. The median age was 30 years and 91% of patients were men. Over 90% of the injuries occurred in alleged assaults. Stabbings were the most common cause of injury (73%), followed by shootings (19%). Forty-seven percent were admitted to critical care for a median length of stay of 2 days; median total hospital length of stay was 7 days. Sixty-nine percent of patients underwent at least one surgical procedure. Eight percent of the patients died before discharge, with a mean time to death of 1.6 days (S.D. 4.0). Mortality ranged from 0% among patients with ISS 1-8 to 55% in patients with ISS > 34. The mean hospital cost per patient was 7983 pound, ranging from 6035 pound in patients with ISS 9-15 to El 6,438 among patients with ISS > 34. Costs varied significantly by ISS, hospital mortality, cause and body region of injury.Conclusion: The acute treatment costs of penetrating trauma injury in England and Wales vary by patient, injury and treatment characteristics. Measures designed toreduce the incidence and severity of penetrating trauma may result in significant hospital cost savings. (C) 2008 Elsevier Ltd. All rights reserved.This study was funded by Novo Nordisk A/S

    Outcomes and costs of blunt trauma in England and Wales

    Get PDF
    Background Trauma represents an important public health concern in the United Kingdom, yet the acute costs of blunt trauma injury have not been documented and analysed in detail. Knowledge of the overall costs of trauma care, and the drivers of these costs, is a prerequisite for a cost-conscious approach to improvement in standards of trauma care, including evaluation of the cost-effectiveness of new healthcare technologies. Methods Using the Trauma Audit Research Network database, we examined patient records for persons aged 18 years and older hospitalised for blunt trauma between January 2000 and December 2005. Patients were stratified by the Injury Severity Score (ISS). Results A total of 35,564 patients were identified; 60% with an ISS of 0 to 9, 17% with an ISS of 10 to 16, 12% with an ISS of 17 to 25, and 11% with an ISS of 26 to 75. The median age was 46 years and 63% of patients were men. Falls were the most common cause of injury (50%), followed by road traffic collisions (33%). Twenty-nine percent of patients were admitted to critical care for a median length of stay of 4 days. The median total hospital length of stay was 9 days, and 69% of patients underwent at least one surgical procedure. Seven percent of the patients died before discharge, with the highest proportion of deaths among those in the ISS 26–75 group (32%). The mean hospital cost per person was £9,530 (± 11,872). Costs varied significantly by Glasgow Coma Score, ISS, age, cause of injury, type of injury, hospital mortality, grade and specialty of doctor seen in the accident and emergency department, and year of admission. Conclusion The acute treatment costs of blunt trauma in England and Wales vary significantly by injury severity and survival, and public health initiatives that aim to reduce both the incidence and severity of blunt trauma are likely to produce significant savings in acute trauma care. The largest component of acute hospital cost is determined by the length of stay, and measures designed to reduce length of admissions are likely to be the most effective in reducing the costs of blunt trauma care

    Risk Adjustment In Neurocritical care (RAIN)--prospective validation of risk prediction models for adult patients with acute traumatic brain injury to use to evaluate the optimum location and comparative costs of neurocritical care: a cohort study.

    Get PDF
    OBJECTIVES: To validate risk prediction models for acute traumatic brain injury (TBI) and to use the best model to evaluate the optimum location and comparative costs of neurocritical care in the NHS. DESIGN: Cohort study. SETTING: Sixty-seven adult critical care units. PARTICIPANTS: Adult patients admitted to critical care following actual/suspected TBI with a Glasgow Coma Scale (GCS) score of < 15. INTERVENTIONS: Critical care delivered in a dedicated neurocritical care unit, a combined neuro/general critical care unit within a neuroscience centre or a general critical care unit outside a neuroscience centre. MAIN OUTCOME MEASURES: Mortality, Glasgow Outcome Scale - Extended (GOSE) questionnaire and European Quality of Life-5 Dimensions, 3-level version (EQ-5D-3L) questionnaire at 6 months following TBI. RESULTS: The final Risk Adjustment In Neurocritical care (RAIN) study data set contained 3626 admissions. After exclusions, 3210 patients with acute TBI were included. Overall follow-up rate at 6 months was 81%. Of 3210 patients, 101 (3.1%) had no GCS score recorded and 134 (4.2%) had a last pre-sedation GCS score of 15, resulting in 2975 patients for analysis. The most common causes of TBI were road traffic accidents (RTAs) (33%), falls (47%) and assault (12%). Patients were predominantly young (mean age 45 years overall) and male (76% overall). Six-month mortality was 22% for RTAs, 32% for falls and 17% for assault. Of survivors at 6 months with a known GOSE category, 44% had severe disability, 30% moderate disability and 26% made a good recovery. Overall, 61% of patients with known outcome had an unfavourable outcome (death or severe disability) at 6 months. Between 35% and 70% of survivors reported problems across the five domains of the EQ-5D-3L. Of the 10 risk models selected for validation, the best discrimination overall was from the International Mission for Prognosis and Analysis of Clinical Trials in TBI Lab model (IMPACT) (c-index 0.779 for mortality, 0.713 for unfavourable outcome). The model was well calibrated for 6-month mortality but substantially underpredicted the risk of unfavourable outcome at 6 months. Baseline patient characteristics were similar between dedicated neurocritical care units and combined neuro/general critical care units. In lifetime cost-effectiveness analysis, dedicated neurocritical care units had higher mean lifetime quality-adjusted life-years (QALYs) at small additional mean costs with an incremental cost-effectiveness ratio (ICER) of £14,000 per QALY and incremental net monetary benefit (INB) of £17,000. The cost-effectiveness acceptability curve suggested that the probability that dedicated compared with combined neurocritical care units are cost-effective is around 60%. There were substantial differences in case mix between the 'early' (within 18 hours of presentation) and 'no or late' (after 24 hours) transfer groups. After adjustment, the 'early' transfer group reported higher lifetime QALYs at an additional cost with an ICER of £11,000 and INB of £17,000. CONCLUSIONS: The risk models demonstrated sufficient statistical performance to support their use in research but fell below the level required to guide individual patient decision-making. The results suggest that management in a dedicated neurocritical care unit may be cost-effective compared with a combined neuro/general critical care unit (although there is considerable statistical uncertainty) and support current recommendations that all patients with severe TBI would benefit from transfer to a neurosciences centre, regardless of the need for surgery. We recommend further research to improve risk prediction models; consider alternative approaches for handling unobserved confounding; better understand long-term outcomes and alternative pathways of care; and explore equity of access to postcritical care support for patients following acute TBI. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    An evaluation of the clinical and cost-effectiveness of alternative care locations for critically ill adult patients with acute traumatic brain injury.

    Get PDF
    BACKGROUND: For critically ill adult patients with acute traumatic brain injury (TBI), we assessed the clinical and cost-effectiveness of: (a) Management in dedicated neurocritical care units versus combined neuro/general critical care units within neuroscience centres. (b) 'Early' transfer to a neuroscience centre versus 'no or late' transfer for those who present at a non-neuroscience centre. METHODS: The Risk Adjustment In Neurocritical care (RAIN) Study included prospective admissions following acute TBI to 67 UK adult critical care units during 2009-11. Data were collected on baseline case-mix, mortality, resource use, and at six months, Glasgow Outcome Scale Extended (GOSE), and quality of life (QOL) (EuroQol 5D-3L). We report incremental effectiveness, costs and cost per Quality-Adjusted Life Year (QALY) of the alternative care locations, adjusting for baseline differences with validated risk prediction models. We tested the robustness of results in sensitivity analyses. FINDINGS: Dedicated neurocritical care unit patients (N = 1324) had similar six-month mortality, higher QOL (mean gain 0.048, 95% CI -0.002 to 0.099) and increased average costs compared with those managed in combined neuro/general units (N = 1341), with a lifetime cost per QALY gained of £14,000. 'Early' transfer to a neuroscience centre (N = 584) was associated with lower mortality (odds ratio 0.52, 0.34-0.80), higher QOL for survivors (mean gain 0.13, 0.032-0.225), but positive incremental costs (£15,001, £11,123 to £18,880) compared with 'late or no transfer' (N = 263). The lifetime cost per QALY gained for 'early' transfer was £11,000. CONCLUSIONS: For critically ill adult patients with acute TBI, within neuroscience centres management in dedicated neurocritical care units versus combined neuro/general units led to improved QoL and higher costs, on average, but these differences were not statistically significant. This study finds that 'early' transfer to a neuroscience centre is associated with reduced mortality, improvement in QOL and is cost-effective

    Prehospital Management of Traumatic Brain Injury across Europe: A CENTER-TBI Study

    Get PDF
    Background Prehospital care for traumatic brain injury (TBI) is important to prevent secondary brain injury. We aim to compare prehospital care systems within Europe and investigate the association of system characteristics with the stability of patients at hospital arrival. Methods We studied TBI patients who were transported to CENTER-TBI centers, a pan-European, prospective TBI cohort study, by emergency medical services between 2014 and 2017. The association of demographic factors, injury severity, situational factors, and interventions associated with on-scene time was assessed using linear regression. We used mixed effects models to investigate the case mix adjusted variation between countries in prehospital times and interventions. The case mix adjusted impact of on-scene time and interventions on hypoxia (oxygen saturation Results Among 3878 patients, the greatest driver of longer on-scene time was intubation (+8.3 min, 95% CI: 5.6-11.1). Secondary referral was associated with shorter on-scene time (-5.0 min 95% CI: -6.2- -3.8). Between countries, there was a large variation in response (range: 12-25 min), on-scene (range: 16-36 min) and travel time (range: 15-32 min) and in prehospital interventions. These variations were not explained by patient factors such as conscious level or severity of injury (expected OR between countries: 1.8 for intubation, 1.8 for IV fluids, 2.0 for helicopter). On-scene time was not associated with the regional EMS policy (p= 0.58). Hypotension and/or hypoxia were seen in 180 (6%) and 97 (3%) patients in the overall cohort and in 13% and 7% of patients with severe TBI (GCS Discussion Hypoxia and hypotension continue to occur in patients who suffer a TBI, and remain relatively common in severe TBI. Substantial variation in prehospital care exists for patients after TBI in Europe, which is only partially explained by patient factors.</div

    Trauma networks: present and future challenges

    Get PDF
    In England, trauma is the leading cause of death across all age groups, with over 16,000 deaths per year. Major trauma implies the presence of multiple, serious injuries that could result in death or serious disability. Successive reports have documented the fact that the current ad hoc unstructured management of this patient group is associated with considerable avoidable death and disability. The reform of trauma care in England, especially of the severely injured patient, has already begun. Strong clinical leadership is embraced as the way forward. The present article summarises the steps that have been made over the last decade that led to the recent decision to move towards a long anticipated restructure of the National Health Service (NHS) trauma services with the introduction of Regional Trauma Networks (RTNs). While, for the first time, a genuine political will and support exists, the changes required to maintain the momentum for the implementation of the RTNs needs to be marshalled against arguments, myths and perceptions from the past. Such an approach may reverse the disinterest attitude of many, and will gradually evolve into a cultural shift of the public, clinicians and policymakers in the fullness of time

    Primary versus early secondary referral to a specialized neurotrauma center in patients with moderate/severe traumatic brain injury: a CENTER TBI study.

    Get PDF
    BackgroundPrehospital care for patients with traumatic brain injury (TBI) varies with some emergency medical systems recommending direct transport of patients with moderate to severe TBI to hospitals with specialist neurotrauma care (SNCs). The aim of this study is to assess variation in levels of early secondary referral within European SNCs and to compare the outcomes of directly admitted and secondarily transferred patients.MethodsPatients with moderate and severe TBI (Glasgow Coma Scale ResultsA total of 1347 moderate/severe TBI patients from 53 SNCs in 18 European countries were included. Of these 1347 patients, 195 (14.5%) were admitted after early secondary referral. Secondarily referred moderate/severe TBI patients presented more often with a CT abnormality: mass lesion (52% vs. 34%), midline shift (54% vs. 36%) and acute subdural hematoma (77% vs. 65%). After adjusting for case-mix, there was a large European variation in early secondary referral, with a median OR of 1.69 between countries. Early secondary referral was not associated with functional outcome (adjusted OR 1.07, 95% CI 0.78-1.69), nor with survival at discharge (1.05, 0.58-1.90).ConclusionsAcross Europe, substantial practice variation exists in the proportion of secondarily referred TBI patients at SNCs that is not explained by case mix. Within SNCs early secondary referral does not seem to impact functional outcome and survival after stabilisation in a non-specialised hospital. Future research should identify which patients with TBI truly benefit from direct transportation
    corecore