427 research outputs found
Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model
We calculate the relic abundance of thermally produced neutralino cold dark
matter in the general 19 parameter supergravity (SUGRA-19) model. A scan over
GUT scale parameters reveals that models with a bino-like neutralino typically
give rise to a dark matter density \Omega_{\tz_1}h^2\sim 1-1000, i.e. between 1
and 4 orders of magnitude higher than the measured value. Models with higgsino
or wino cold dark matter can yield the correct relic density, but mainly for
neutralino masses around 700-1300 GeV. Models with mixed bino-wino or
bino-higgsino CDM, or models with dominant co-annihilation or A-resonance
annihilation can yield the correct abundance, but such cases are extremely hard
to generate using a general scan over GUT scale parameters; this is indicative
of high fine-tuning of the relic abundance in these cases. Requiring that
m_{\tz_1}\alt 500 GeV (as a rough naturalness requirement) gives rise to a
minimal probably dip in parameter space at the measured CDM abundance. For
comparison, we also scan over mSUGRA space with four free parameters. Finally,
we investigate the Peccei-Quinn augmented MSSM with mixed axion/axino cold dark
matter. In this case, the relic abundance agrees more naturally with the
measured value. In light of our cumulative results, we conclude that future
axion searches should probe much more broadly in axion mass, and deeper into
the axion coupling.Comment: 23 pages including 17 .eps figure
The gravitino coupling to broken gauge theories applied to the MSSM
We consider gravitino couplings in theories with broken gauge symmetries. In
particular, we compute the single gravitino production cross section in W+ W-
fusion processes. Despite recent claims to the contrary, we show that this
process is always subdominant to gluon fusion processes in the high energy
limit. The full calculation is performed numerically; however, we give analytic
expressions for the cross section in the supersymmetric and electroweak limits.
We also confirm these results with the use of the effective theory of goldstino
interactions.Comment: 26 pages, 4 figure
Mass extinctions and supernova explosions
A nearby supernova (SN) explosion could have negatively influenced life on
Earth, maybe even been responsible for mass extinctions. Mass extinction poses
a significant extinction of numerous species on Earth, as recorded in the
paleontologic, paleoclimatic, and geological record of our planet. Depending on
the distance between the Sun and the SN, different types of threats have to be
considered, such as ozone depletion on Earth, causing increased exposure to the
Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another
indirect effect is cloud formation, induced by cosmic rays in the atmosphere
which result in a drop in the Earth's temperature, causing major glaciations of
the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which
could be connected to SNe, initiated further discussions on possible
life-threatening events in Earth's history. The probability that GRBs hit the
Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or
SNe cannot be excluded and might even have been responsible for past extinction
events.Comment: Chapter for forthcoming book: Handbook of Supernovae, P. Murdin and
A. Alsabeti (eds.), Springer International Publishing (in press
Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider
While the SUSY flavor, CP and gravitino problems seem to favor a very heavy
spectrum of matter scalars, fine-tuning in the electroweak sector prefers low
values of superpotential mass \mu. In the limit of low \mu, the two lightest
neutralinos and light chargino are higgsino-like. The light charginos and
neutralinos may have large production cross sections at LHC, but since they are
nearly mass degenerate, there is only small energy release in three-body
sparticle decays. Possible dilepton and trilepton signatures are difficult to
observe after mild cuts due to the very soft p_T spectrum of the final state
isolated leptons. Thus, the higgsino-world scenario can easily elude standard
SUSY searches at the LHC. It should motivate experimental searches to focus on
dimuon and trimuon production at the very lowest p_T(\mu) values possible. If
the neutralino relic abundance is enhanced via non-standard cosmological dark
matter production, then there exist excellent prospects for direct or indirect
detection of higgsino-like WIMPs. While the higgsino-world scenario may easily
hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider
operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access
the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure
W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD
We consider the production of W bosons in hadron collisions, and the
subsequent leptonic decay W->lnu_l. We study the asymmetry between the rapidity
distributions of the charged leptons, and we present its computation up to the
next-to-next-to-leading order (NNLO) in QCD perturbation theory. Our
calculation includes the dependence on the lepton kinematical cuts that are
necessarily applied to select W-> lnu_l events in actual experimental analyses
at hadron colliders. We illustrate the main differences between the W and
lepton charge asymmetry, and we discuss their physical origin and the effect of
the QCD radiative corrections. We show detailed numerical results on the charge
asymmetry in ppbar collisions at the Tevatron, and we discuss the comparison
with some of the available data. Some illustrative results on the lepton charge
asymmetry in pp collisions at LHC energies are presented.Comment: 37 pages, 21 figure
The moment of truth for WIMP Dark Matter
We know that dark matter constitutes 85% of all the matter in the Universe,
but we do not know of what it is made. Amongst the many Dark Matter candidates
proposed, WIMPs (weakly interacting massive particles) occupy a special place,
as they arise naturally from well motivated extensions of the standard model of
particle physics. With the advent of the Large Hadron Collider at CERN, and a
new generation of astroparticle experiments, the moment of truth has come for
WIMPs: either we will discover them in the next five to ten years, or we will
witness the inevitable decline of WIMP paradigm.Comment: To appear in Nature (Nov 18, 2010
Nutritional correlates of koala persistence in a low-density population
It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.IW and WF received a grant from New
South Wales (NSW) Department of Environment,
Climate Change & Water
Ontogeny of juvenile freshwater pearl mussels, Margaritifera margaritifera (Bivalvia: Margaritiferidae).
The gills of juvenile freshwater bivalves undergo a complex morphogenesis that may correlate with changes in feeding ecology, but ontogenic studies on juvenile mussels are rare. Scanning electron microscopy was used to examine the ultrastructure and ontogeny of 117 juvenile freshwater pearl mussels (Margaritifera margaritifera) ranging in age from 1–44 months and length from 0.49–8.90 mm. Three stages of gill development are described. In Stage 1 (5–9 inner demibranch filaments), only unreflected inner demibranch filaments were present. In Stage 2 (9–17 inner demibranch filaments), inner demibranch filaments began to reflect when shell length exceeded 1.13 mm, at 13–16 months old. Reflection began in medial filaments and then proceeded anterior and posterior. In Stage 3 (28–94 inner demibranch filaments), outer demibranch filaments began developing at shell length > 3.1 mm and about 34 months of age. The oral groove on the inner demibranch was first observed in 34 month old specimens > 2.66 mm but was never observed on the outer demibranch. Shell length (R2 = 0.99) was a better predictor of developmental stage compared to age (R2 = 0.84). The full suite of gill ciliation was present on filaments in all stages. Interfilamentary distance averaged 31.3 μm and did not change with age (4–44 months) or with size (0.75–8.9 mm). Distance between laterofrontal cirri couplets averaged 1.54 μm and did not change significantly with size or age. Labial palp primordia were present in even the youngest individuals but ciliature became more diverse in more developed individuals. Information presented here is valuable to captive rearing programmes as it provides insight in to when juveniles may be particularly vulnerable to stressors due to specific ontogenic changes. The data are compared with two other recent studies of Margaritifera development.N/
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
- …
