24 research outputs found

    Dynamics of conflicts in Wikipedia

    Get PDF
    In this work we study the dynamical features of editorial wars in Wikipedia (WP). Based on our previously established algorithm, we build up samples of controversial and peaceful articles and analyze the temporal characteristics of the activity in these samples. On short time scales, we show that there is a clear correspondence between conflict and burstiness of activity patterns, and that memory effects play an important role in controversies. On long time scales, we identify three distinct developmental patterns for the overall behavior of the articles. We are able to distinguish cases eventually leading to consensus from those cases where a compromise is far from achievable. Finally, we analyze discussion networks and conclude that edit wars are mainly fought by few editors only.Comment: Supporting information adde

    Global health education: a pilot in trans-disciplinary, digital instruction

    Get PDF
    Background: The development of new global health academic programs provides unique opportunities to create innovative educational approaches within and across universities. Recent evidence suggests that digital media technologies may provide feasible and cost-effective alternatives to traditional classroom instruction; yet, many emerging global health academic programs lag behind in the utilization of modern technologies. Objective: We created an inter-departmental University of Southern California (USC) collaboration to develop and implement a course focused on digital media and global health. Design: Course curriculum was based on core tenants of modern education: multi-disciplinary, technologically advanced, learner-centered, and professional application of knowledge. Student and university evaluations were reviewed to qualitatively assess course satisfaction and educational outcomes. Results: ‘New Media for Global Health’ ran for 18 weeks in the Spring 2012 semester with N=41 students (56.1% global health and 43.9% digital studies students). The course resulted in a number of high quality global health-related digital media products available at http://iml420.wordpress.com/. Challenges confronted at USC included administrative challenges related to co-teaching and frustration from students conditioned to a rigid system of teacher-led learning within a specific discipline. Quantitative and qualitative course evaluations reflected positive feedback for the course instructors and mixed reviews for the organization of the course. Conclusion: The development of innovative educational programs in global health requires on-going experimentation and information sharing across departments and universities. Digital media technologies may have implications for future efforts to improve global health education

    Olfactory Stem Cells, a New Cellular Model for Studying Molecular Mechanisms Underlying Familial Dysautonomia

    Get PDF
    International audienceBackground: Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells.Methodology/Principal Findings: We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation.Conclusions/Significance: hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Direct end-user interaction with and through IoT devices

    No full text
    Research addressing the Internet of Things (IoT) has been predominantly concerned with the interconnection of physical devices. However, increasingly complex application scenarios require us to further investigate the interface between IoT devices and users. In this book chapter, we explore the possibilities of direct end-user interaction with and through IoT devices. We do this by examining the increasing automation of environmental factors, such as temperature and lighting, in open-office environments. Increasing automation offers many benefits around responsiveness of buildings to environmental conditions and improved energy efficiency, but can result in a reduction in office inhabitants’ options for manual control of their environment. To inquire into this issue, we designed and evaluated an IoT device called the MiniOrb. The device employs tangible and ambient interaction and feedback mechanisms to support office environment inhabitants in maintaining awareness about environmental conditions. It reports on their subjective perceptions and opinions around comfort levels in the office and receives feedback on how their individual preferences compare with their colleagues’. A mobile-device-based version of the application was also created. Employing screen and touch interactions, this version of the interface enables users to access the same information as the tangible device, but with different degrees of input precision and ambient interaction. We describe the design of the system along with the results of a trial of the device with real users, including a post-trial interview. The results shed light on how IoT devices can support direct end-user interaction by combining ambient and tangible interaction approaches. Such devices can mediate the interpretation of sensed data by end-users, as well as help collect crowd-sourced data that directly relate to sensed data
    corecore