40 research outputs found

    Access to emergency department for acute events and identification of sickle cell disease in refugees.

    Get PDF
    Throughout the last decade, thousands of refugees arrived on a daily basis on the Mediterranean coast of Southern-European countries. As this influx is not expected to slow down, developing national and European strategies is required to ensure appropriate and accessible health care to these vulnerable populations.1,2 The vast majority of these migrants come from areas in which sickle cell disease (SCD) and other hemoglobinopathies are highly prevalent. Limited data are available on the burden of these disorders in populations of refugees. Here, we present two pieces of evidence supporting the need for specific strategies for the early identification of SCD in refugees. First, we carried out a retrospective study of data collected during the period 2014-2017 across 13 Italian reference centers for SCD and hemoglobinopathies. The primary outcome of this study was to identify events associated with the new diagnosis of SCD in refugees and the secondary outcome was to evaluate the impact of hemoglobinopathies in refugees coming from endemic areas. The descriptive analysis of variables was performed with counts, percentages, mean and standard deviation (SD) or median and interquartile range (IQR: 25th - 75th percentile). Then, we discuss the results of a pilot study which screened all refugees seen in a single second-level refugee center during October 2017, using one of the new rapid point of care screening devices (SickleSCAN\uae BioMedomics, inc.). The aim was to fast-track the care of individuals with SCD and the collection of relevant demographic data.3-5 The results were then validated by HPLC, the standard gold-standard screening method.3-

    Gestational diabetes mellitus and retinal microvasculature.

    Get PDF
    BACKGROUND: Small-vessel dysfunction may be an important consequence of chronic hyperglycemia. We examined the association between gestational diabetes mellitus (GDM), a state of transient hyperglycemia during pregnancy, and retinal microvascular changes in pregnant women at 26-28 weeks of pregnancy. METHODS: A total of 1136 pregnant women with singleton pregnancies were recruited during their first trimester at two major Singapore maternity hospitals in an on-going birth cohort study. Participants underwent an oral glucose tolerance test and retinal imaging at 26-28 weeks gestation (n = 542). We used the 1999 World Health Organization (WHO) criteria to define GDM: ≥7.0 mmol/L for fasting glucose and/or ≥7.8 mmol/L for 2-h post-glucose. Retinal microvasculature was measured using computer software (Singapore I Vessel Analyzer, SIVA version 3.0, Singapore Eye Research Institute, Singapore) from the retinal photographs. RESULTS: In a multiple linear regression model adjusting for age, ethnicity and maternal education, mothers with GDM had narrower arteriolar caliber (-1.6 μm; 95% Confidence Interval [CI]: -3.1 μm, -0.2 μm), reduced arteriolar fractal dimension (-0.01 Df; 95% CI: -0.02 Df, -0.001 Df;), and larger arteriolar branching angle (1.8°; 95% CI: 0.3°, 3.3°) than mothers without GDM. After further adjusting for traditional risks of GDM, arteriolar branching angle remained significantly larger in mothers with GDM than those without GDM (2.0°; 95% CI: 0.5°, 3.6°). CONCLUSIONS: GDM was associated with a series of retinal arteriolar abnormalities, including narrower caliber, reduced fractal dimension and larger branching angle, suggesting that transient hyperglycemia during pregnancy may cause small-vessel dysfunction

    Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9

    Get PDF
    Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous inactivation of Sgs1, Exo1, and Rad9, three DNA damage response (DDR) proteins, is sufficient to allow cell division in the absence of Cdc13. Quantitative amplification of ssDNA (QAOS) was used to show that the RecQ helicase Sgs1 plays an important role in the resection of uncapped telomeres, especially in the absence of checkpoint protein Rad9. Strikingly, simultaneous deletion of SGS1 and the nuclease EXO1, further reduces resection at uncapped telomeres and together with deletion of RAD9 permits cell survival without CDC13. Pulsed-field gel electrophoresis studies show that cdc13-1 rad9Δ sgs1Δ exo1Δ strains can maintain linear chromosomes despite the absence of telomere capping by Cdc13. However, with continued passage, the telomeres of such strains eventually become short and are maintained by recombination-based mechanisms. Remarkably, cdc13Δ rad9Δ sgs1Δ exo1Δ strains, lacking any Cdc13 gene product, are viable and can grow indefinitely. Our work has uncovered a critical role for RecQ helicases in limiting the division of cells with uncapped telomeres, and this may provide one explanation for increased tumorigenesis in human diseases associated with mutations of RecQ helicases. Our results reveal the plasticity of the telomere cap and indicate that the essential role of telomere capping is to counteract specific aspects of the DDR

    Transfusional approach in multi-ethnic Sickle Cell patients: real-world practice data from a Multicenter survey in Italy

    Get PDF
    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder characterized by recurrent acute vaso-occlusive crises (VOCs and anemia). Gold standard treatments are hydroxycarbamide (HC) and/or different red blood cell (RBC) transfusion regimens to limit disease progression. Here, we report a retrospective study on 1,579 SCD patients (median age 23 years; 802 males/777 females), referring to 34 comprehensive Italian centers for hemoglobinopathies. Although we observed a similar proportion of Caucasian (47.9%) and African (48.7%) patients, Italian SCD patients clustered into two distinct overall groups: children of African descent and adults of Caucasian descent. We found a subset of SCD patients requiring more intensive therapy with a combination of HC plus chronic transfusion regimen, due to partial failure of HC treatment alone in preventing or reducing sickle cell-related acute manifestations. Notably, we observed a higher use of acute transfusion approaches for SCD patients of African descent when compared to Caucasian subjects. This might be related to (i) age of starting HC treatment; (ii) patients' low social status; (iii) patients' limited access to family practitioners; or (iv) discrimination. In our cohort, alloimmunization was documented in 135 patients (8.5%) and was more common in Caucasians (10.3%) than in Africans (6.6%). Alloimmunization was similar in male and female and more frequent in adults than in children. Our study reinforces the importance of donor-recipient exact matching for ABO, Rhesus, and Kell antigen systems for RBC compatibility as a winning strategy to avoid or limit alloimmunization events that negatively impact the clinical management of SCD-related severe complications

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link

    Direct observation of a propagating spin wave induced by spin-transfer torque

    No full text
    Spin torque oscillators with nanoscale electrical contacts(1-4) are able to produce coherent spin waves in extended magnetic films, and offer an attractive combination of electrical and magnetic field control, broadband operation(5,6), fast spin-wave frequency modulation(7-9), and the possibility of synchronizing multiple spin-wave injection sites(10,11). However, many potential applications rely on propagating (as opposed to localized) spin waves, and direct evidence for propagation has been lacking. Here, we directly observe a propagating spin wave launched from a spin torque oscillator with a nanoscale electrical contact into an extended Permalloy (nickel iron) film through the spin transfer torque effect. The data, obtained by wave-vector-resolved micro-focused Brillouin light scattering, show that spin waves with tunable frequencies can propagate for several micrometres. Micromagnetic simulations provide the theoretical support to quantitatively reproduce the results
    corecore