78 research outputs found

    Facial width-to-height ratio relates to alpha status and assertive personality in capuchin monkeys

    Get PDF
    Social dominance hierarchies play a pivotal role in shaping the behaviour of many species, and sex differences within these hierarchies often exist. To date, however, few physical markers of dominance have been identified. Such markers would be valuable in terms of understanding the etiology of dominant behaviour and changes in social hierarchies over time. Animals may also use such traits to evaluate the potential dominance of others relative to themselves (i.e. a physical “cue”). Facial width-to-height ratio (fWHR), for example, has been suggested as a cue to dominance in humans, with links to both dominant behaviour and the perception of dominance in other individuals. Whether this association is present in non-human animals is currently not known. Therefore, here we examine within-species links between fWHR and dominant behaviour in 64 brown capuchin monkeys (Sapajus spp.) aged between 2 and 40 years. fWHR was positively associated with alpha status and with a dimensional rating of assertive personality in both males and females. Moreover, fWHR showed significant sexual dimorphism in adults but not juveniles, suggesting a developmental change may occur during puberty. In a sub-sample, sex differences were mediated by weight, suggesting fWHR dimorphism does not exceed what would be expected by differences in body weight. This is the first report of an association between face shape and behaviour in a non-human species. Results are discussed in terms of the role that face-behaviour associations might play within capuchin societies, and the possible selective forces that might have led to the evolution of fWHR-dominance associations in humans

    Phylogenetic relationships in southern African Bryde's whales inferred from mitochondrial DNA : further support for subspecies delineation between the two allopatric populations

    Get PDF
    Bryde’s whales (Balaenoptera edeni) are medium-sized balaenopterids with tropical and subtropical distribution. There is confusion about the number of species, subspecies and populations of Bryde’s whale found globally. Two eco-types occur off South Africa, the inshore and offshore forms, but with unknown relationship between them. Using the mtDNA control region we investigated the phylogenetic relationship of these populations to each other and other Bryde’s whale populations. Skin, baleen and bone samples were collected from biopsy-sampled individuals, strandings and museum collections. 97 sequences of 674 bp (bp) length were compared with published sequences of Bryde’s whales (n = 6) and two similar species, Omura’s (B. omurai) and sei (B. borealis) whales (n = 3). We found eight haplotypes from the study samples: H1–H4 formed a distinct, sister clade to pelagic populations of Bryde’s whales (B. brydei) from the South Pacific, North Pacific and Eastern Indian Ocean. H5–H8 were included in the pelagic clade. H1–H4 represented samples from within the distributional range of the inshore form. Pairwise comparisons of the percentage of nucleotide differences between sequences revealed that inshore haplotypes differed from published sequences of B. edeni by 4.7–5.5% and from B. brydei by 1.8–2.1%. Ten fixed differences between inshore and offshore sequences supported 100% diagnosability as subspecies. Phylogenetic analyses grouped the South African populations within the Bryde’s-sei whale clade and excluded B. edeni. Our data, combined with morphological and ecological evidence from previous studies, support subspecific classification of both South African forms under B. brydei and complete separation from B. edeni.PostprintPeer reviewe

    Beliefs about aggression in an Indian sample

    No full text
    Studies of Western samples have shown than men tend to view aggression as an instrumental act, whereas women view it in expressive terms. The present Study 1 investigated the applicability of these concepts (measured by the Expressions of Aggression Scale, EXPAGG), to a sample of 400 (both sexes, ages 16 and 26 years) from the Indian state of Mizoram, presenting the questionnaires in English, the participants’ second language. Trait aggression was also assessed, measured by the Buss-Perry Aggression Questionnaire (BPAQ). Consistent with western findings, men showed higher instrumental and physical aggression than women, but they also showed higher expressive beliefs, contrary to previous findings. Both instrumental beliefs and physical aggression were higher at 16 than at 26 years of age. Since reliabilities of the scales were low, the questionnaires were translated into Mizo and presented to another similar sample of 201 participants (101 males; the same age groups as in Study 1). The pattern of mean differences and correlations were similar to Study 1, although the reliabilities increased only slightly. To accommodate the relative independence of the items, both analyses were carried out on the individual items of the various scales, using a MANOVA. Age and sex differences for specific items supported the overall findings. Overall, there were some similarities with western samples regarding beliefs about aggression, and sex and age differences in aggression, although the structures of responses appeared more complex

    A self-validating digital Coriolis mass-flow meter: an overview

    Get PDF
    A new implementation of a Coriolis mass-flow meter transmitter is described. It is based on digital components, and has improved performance compared with the commercial, mostly analogue, transmitter using the same flowtube (transducer). Improvements are found in flowtube control, measurement precision, and performance with two-phase and partially-empty conditions, including batching from empty. The new transmitter is viewed as a second-generation sensor validation (SEVA) demonstrator, in which experience from validating the commercial analogue transmitter has led to a redesign using digital technology. The resulting SEVA transmitter provides improved measurement performance and reduced vulnerability to fault conditions, as well as on-line estimates of measurement quality and fault compensation (Henry and Clarke, Control Engineering practice, 1 (4) (1993) 585-610). (C) 2000 Elsevier Science Ltd. All rights reserved

    Dimethylsulphide production in the Southern Ocean using a nitrogen-based flow network model and field measurements from ACE-1

    No full text
    Dimethylsulphide (DMS) has been implicated in climate change as a possible negative feedback to global warming, and several Models have been developed that simulate the production of DMS in the marine environment. The focus of this study is to improve the nitrogen based Gabric Model, using field data collected during the Southern Hemisphere First Marine Aerosol Characterisation Experiment (ACE-1) in the Southern Ocean in 1995. Two Model Runs (Series A and B) were carried out with six simulations of varying biotic and abiotic inputs applied over the voyage transect (41-48°S), reflecting Model default values or field values from the experiment. The abiotic inputs were time-step, dissolved dimethylsulphoniopropionate (DMSP) and DMS, and the biotic nitrogen inputs were from phytoplankton, bacteria, zooflagellates, large protozoa, micro and mesozooplankton. The focus of the abiotic assessment was nutrient (nitrate) uptake and dissolved DMSP and DMS output. Model output of the biotic compartments was assessed for congruence with predicted ecological patterns of succession. Despite a limited data set the study provides a good insight into the utility of the Model, which functioned as a heuristic rather than predictive tool. In simulation 1 (Series A) where the only field value was nitrate, all latitudes from 41-48°S concurred with the ecological succession predicted by the Model authors and the successional pattern predicted by other researchers, with a double phytoplankton peak indicating remineralisation of nitrogen via the microbial loop. In many simulations the Model produced lower values of dissolved DMS than were measured, and production of DMS in the Model appears constrained. However, in simulation 5 (Series A) DMS model outputs were closest to the mean dissolved DMS levels reported on RV Discoverer. In this simulation, field values were used for phytoplankton, nitrate, dissolved DMSP and DMS, with bacterial abundance and micro and mesozooplankton increased over their Gabric default values. Also, the phytoplankton double peak occurred earlier, as did the peaks in bacteria, zooflagellates, and large protozoa. Simulations that deviated more significantly from the predicted successional patterns were characterised by single peaks in phytoplankton growth and delayed bacterial growth. Series C simulations at latitude 43°S, in an attempt to reduce phytoplankton predation by bacteria, increased DMS output reasonably successfully. However, significant recalibration of the Model is recommended in conjunction with field studies to gather vital background biological data - particularly in the areas of nutrient limitation, phytoplankton speciation, and the cellular content of the DMS precursor compound, DMSP
    corecore