796 research outputs found

    Regularity of the stress-energy tensor for extremal Reissner-Nordstrom black holes

    Full text link
    We calculate the expectation values of the stress-energy tensor for both a massless minimally-coupled and dilaton-coupled 2D field propagating on an extremal Reissner-Nordstrom black hole, showing its regularity on the horizon in contrast with previous claims in the literature.Comment: 10 pages, 1 figure; Talk given at QG05, Cala Gonone (Italy), September 200

    Covariant Galileon

    Full text link
    We consider the recently introduced "galileon" field in a dynamical spacetime. When the galileon is assumed to be minimally coupled to the metric, we underline that both field equations of the galileon and the metric involve up to third-order derivatives. We show that a unique nonminimal coupling of the galileon to curvature eliminates all higher derivatives in all field equations, hence yielding second-order equations, without any extra propagating degree of freedom. The resulting theory breaks the generalized "Galilean" invariance of the original model.Comment: 10 pages, no figure, RevTeX4 format; v2 adds footnote 1, Ref. [12], reformats the link in Ref. [14], and corrects very minor typo

    Counting the degrees of freedom of generalized Galileons

    Full text link
    We consider Galileon models on curved spacetime, as well as the counterterms introduced to maintain the second-order nature of the field equations of these models when both the metric and the scalar are made dynamical. Working in a gauge invariant framework, we first show how all the third-order time derivatives appearing in the field equations -- both metric and scalar -- of a Galileon model or one defined by a given counterterm can be eliminated to leave field equations which contain at most second-order time derivatives of the metric and of the scalar. The same is shown to hold for arbitrary linear combinations of such models, as well as their k-essence-like/Horndeski generalizations. This supports the claim that the number of degrees of freedom in these models is only 3, counting 2 for the graviton and 1 for the scalar. We comment on the arguments given previously in support of this claim. We then prove that this number of degrees of freedom is strictly less that 4 in one particular such model by carrying out a full-fledged Hamiltonian analysis. In contrast to previous results, our analyses do not assume any particular gauge choice of restricted applicability.Comment: 27 pages, no figure; v2: short explanation added below Eq. (42), improved Sec. II.B.

    Sentencing Upon Revocation of Probation in Florida

    Get PDF
    The Supreme Court of Florida held that a trial court is free to impose any sentence upon revocation of probation which it might have originally imposed despite the fact that the trial court had originally imposed a lesser sentence. In so doing, the court overruled the overwhelming weight of authority exhibited by the lower appellate courts. The author suggests that the defendant\u27s constitutional protection against being twice placed in jeopardy for the same offense and his right to counsel may have been infringed upon in the process

    Sentencing Upon Revocation of Probation in Florida

    Get PDF
    The Supreme Court of Florida held that a trial court is free to impose any sentence upon revocation of probation which it might have originally imposed despite the fact that the trial court had originally imposed a lesser sentence. In so doing, the court overruled the overwhelming weight of authority exhibited by the lower appellate courts. The author suggests that the defendant\u27s constitutional protection against being twice placed in jeopardy for the same offense and his right to counsel may have been infringed upon in the process

    Hawking radiation from extremal and non-extremal black holes

    Get PDF
    The relationship between Hawking radiation emitted by non extremal and extremal Reissner Nordstrom black holes is critically analyzed. A careful study of a series of regular collapsing geometries reveals that the stress energy tensor stays regular in the extremal limit and is smoothly connected to that of non extremal black holes. The unexpected feature is that the late time transients which played little role in the non extremal case are necessary to preserve the well defined character of the flux in the extremal case. The known singular behavior of the static energy density of extremal black holes is recovered from our series by neglecting these transients, when performing what turns out to be an illegitimate late time limit. Although our results are derived in two dimensional settings, we explain why they should also apply to higher dimensional black holes.Comment: 18 pages, late

    Quantum effects and superquintessence in the new age of precision cosmology

    Full text link
    Recent observations of Type Ia supernova at high redshifts establish that the dark energy component of the universe has (a probably constant) ratio between pressure and energy density w=p/ρ=1.02(0.19+0.13)w=p/\rho=-1.02(^{+0.13}_{-0.19}). The conventional quintessence models for dark energy are restricted to the range 1w<0-1\le w < 0, with the cosmological constant corresponding to w=1w=-1. Conformally coupled quintessence models are the simplest ones compatible with the marginally allowed superaccelerated regime (w<1w<-1). However, they are known to be plagued with anisotropic singularities. We argue here that the extension of the classical approach to the semiclassical one, with the inclusion of quantum counterterms necessary to ensure the renormalization, can eliminate the anisotropic singularities preserving the isotropic behavior of conformally coupled superquintessence models. Hence, besides of having other interesting properties, they are consistent candidates to describe the superaccelerated phases of the universe compatible with the present experimental data.Comment: 7 pages. Essay selected for "Honorable Mention" in the 2004 Awards for Essays on Gravitation, Gravity Research Foundatio

    Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography

    Get PDF
    Motivated by the quest for black holes in AdS braneworlds, and in particular by the holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in the (zero temperature) Boulware vacuum state. In the absence of an exact analytical expression for in four dimensions we work within the s-wave approximation. Our results show that the quantum corrected solution is very similar to Schwarzschild till very close to the horizon, but then a bouncing surface for the radial function appears which prevents the formation of an event horizon. We also analyze the behavior of the geometry beyond the bounce, where a curvature singularity arises. In the dual theory, this indicates that the corresponding 5D static classical braneworld solution is not a black hole but rather a naked singularity.Comment: 26 pages, 4 figures; revised version (title changed, conclusions shortened), published as Phys. Rev. D73, 104023 (2006

    Light scalar field constraints from gravitational-wave observations of compact binaries

    Full text link
    Scalar-tensor theories are among the simplest extensions of general relativity. In theories with light scalars, deviations from Einstein's theory of gravity are determined by the scalar mass m_s and by a Brans-Dicke-like coupling parameter \omega_{BD}. We show that gravitational-wave observations of nonspinning neutron star-black hole binary inspirals can be used to set lower bounds on \omega_{BD} and upper bounds on the combination m_s/\sqrt{\omega_{BD}}$. We estimate via a Fisher matrix analysis that individual observations with signal-to-noise ratio \rho would yield (m_s/\sqrt{\omega_{BD}})(\rho/10)<10^{-15}, 10^{-16} and 10^{-19} eV for Advanced LIGO, ET and eLISA, respectively. A statistical combination of multiple observations may further improve these bounds.Comment: 9 pages, 4 figures. Matches version accepted in Physical Review
    corecore