3,484 research outputs found

    Anti-inflammatory Effects of Abdominal Vagus Nerve Stimulation on Experimental Intestinal Inflammation

    Get PDF
    Electrical stimulation of the cervical vagus nerve is an emerging treatment for inflammatory bowel disease (IBD). However, side effects from cervical vagal nerve stimulation (VNS) are often reported by patients. Here we hypothesized that stimulating the vagus nerve closer to the end organ will have fewer off-target effects and will effectively reduce intestinal inflammation. Specifically, we aimed to: (i) compare off-target effects during abdominal and cervical VNS; (ii) verify that VNS levels were suprathreshold; and (iii) determine whether abdominal VNS reduces chemically-induced intestinal inflammation in rats. An electrode array was developed in-house to stimulate and record vagal neural responses. In a non-recovery experiment, stimulation-induced off-target effects were measured by implanting the cervical and abdominal vagus nerves of anaesthetized rats (n = 5) and recording changes to heart rate, respiration and blood pressure during stimulation (10 Hz; symmetric biphasic current pulse; 320 nC per phase). In a chronic experiment, the efficacy of VNS treatment was assessed by implanting an electrode array onto the abdominal vagus nerve and recording in vivo electrically-evoked neural responses during the implantation period. After 14 days, the intestine was inflamed with TNBS (2.5% 2,4,6-trinitrobenzene sulphonic acid) and rats received therapeutic VNS (n = 7; 10 Hz; 320 nC per phase; 3 h/day) or no stimulation (n = 8) for 4.5 days. Stool quality, plasma C-reactive protein and histology of the inflamed intestine were assessed. Data show that abdominal VNS had no effect (two-way RM-ANOVA: P ≄ 0.05) on cardiac, respiratory and blood pressure parameters. However, during cervical VNS heart rate decreased by 31 ± 9 beats/minute (P ≄ 0.05), respiration was inhibited and blood pressure decreased. Data addressing efficacy of VNS treatment show that electrically-evoked neural response thresholds remained stable (one-way RM ANOVA: P ≄ 0.05) and therapeutic stimulation remained above threshold. Chronically stimulated rats, compared to unstimulated rats, had improved stool quality (two-way RM ANOVA: P < 0.0001), no blood in feces (P < 0.0001), reduced plasma C-reactive protein (two-way RM ANOVA: P < 0.05) and a reduction in resident inflammatory cell populations within the intestine (Kruskal–Wallis: P < 0.05). In conclusion, abdominal VNS did not evoke off-target effects, is an effective treatment of TNBS-induced inflammation, and may be an effective treatment of IBD in humans

    Active Galactic Nuclei under the scrutiny of CTA

    Full text link
    Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, to revisit the central engines and their associated relativistic jets, and to study the particle acceleration and emission mechanisms, particularly exploring the missing link between accretion physics, SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an extremely rewarding observing program which will inform us about the inner workings and evolution of AGN. Furthermore these AGN are bright beacons of gamma-rays which will allow us to constrain the extragalactic infrared and optical backgrounds as well as the intergalactic magnetic field, and will enable tests of quantum gravity and other "exotic" phenomena.Comment: 28 pages, 23 figure

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping

    Get PDF
    The Pauli blocking limit and optical limiting threshold have been found to be modified following silver-nanoparticle decoration of functionalized hydrogen induced exfoliated graphene. Femtosecond Z-scan experiments have been used to measure the Pauli blocking range, optical limiting threshold, and the third order nonlinear susceptibility (χ(3)) values. The observed results have been explained by modified band structure of graphene in the presence of silver nanoparticles and their localized surface plasmon resonances

    Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    Get PDF
    An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the transitions linking the two SD bands have been firmly established. Comparisons with RPA calculations indicate that the excited SD band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm

    Geological, mineralogical and textural impacts on the distribution of environmentally toxic trace elements in seafloor massive sulfide occurrences

    Get PDF
    With mining of seafloor massive sulfides (SMS) coming closer to reality, it is vital that we have a good understanding of the geochemistry of these occurrences and the potential toxicity impact associated with mining them. In this study, SMS samples from seven hydrothermal fields from various tectonic settings were investigated by in-situ microanalysis (electron microprobe (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)) to highlight the distribution of potentially-toxic trace elements (Cu, Zn, Pb, Mn, Cd, As, Sb, Co, Ni, Bi, Ag and Hg) within the deposits, their minerals and textures. We demonstrate that a combination of mineralogy, trace element composition and texture characterisation of SMS from various geotectonic settings, when considered along with our current knowledge of oxidation rates and galvanic coupling, can be used to predict potential toxicity of deposit types and individual samples and highlight which may be of environmental concern. Although we cannot quantify toxicity, we observe that arc-related sulfide deposits have a high potential toxicity when compared with deposits from other tectonic settings based on their genetic association of a wide range of potentially toxic metals (As, Sb, Pb, Hg, Ag and Bi) that are incorporated into more reactive sulfosalts, galena and Fe-rich sphalerite. Thus, deposits such as these require special care when considered as mining targets. In contrast, the exclusive concern of ultra-mafic deposits is Cu, present in abundant, albeit less reactive chalcopyrite, but largely barren of other metals such as As, Pb, Sb, Cd and Hg. Whilst geological setting does dictate metal endowment, ultimately mineralogy is the largest control of trace element distribution and subsequent potential toxicity. Deposits containing abundant pyrrhotite (high-temperature deposits) and Fe-rich sphalerite (ubiquitous to all SMS deposits) as well as deposits with abundant colloform textures also pose a higher risk. This type of study can be combined with “bulk lethal toxicity” assessments and used throughout the stages of a mining project to help guide prospecting and legislation, focus exploitation and minimise environmental impact

    On the equivalence of pairing correlations and intrinsic vortical currents in rotating nuclei

    Full text link
    The present paper establishes a link between pairing correlations in rotating nuclei and collective vortical modes in the intrinsic frame. We show that the latter can be embodied by a simple S-type coupling a la Chandrasekhar between rotational and intrinsic vortical collective modes. This results from a comparison between the solutions of microscopic calculations within the HFB and the HF Routhian formalisms. The HF Routhian solutions are constrained to have the same Kelvin circulation expectation value as the HFB ones. It is shown in several mass regions, pairing regimes, and for various spin values that this procedure yields moments of inertia, angular velocities, and current distributions which are very similar within both formalisms. We finally present perspectives for further studies.Comment: 8 pages, 4 figures, submitted to Phys. Rev.
    • 

    corecore