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Abstract 14 
Seafloor massive sulphide (SMS) samples from the Trans-Atlantic Geotraverse deposit on the Mid-Atlantic Ridge 15 

were characterised and subjected to leaching experiments to emulate proposed SMS mining processes. Over 16 

time, leached Fe is removed from solution by the precipitation of Fe oxy-hydroxides, whereas Cu and Pb leached 17 

remained in solution at ppb levels. Bulk chemistry is not the main control on leachate concentrations; instead 18 

mineralogy and/or galvanic couples between minerals are the driving forces behind the type and concentration of 19 

leached metals. Dissolved concentrations exceed ANZECC toxicity guidelines by 620 times, implying the formation 20 

of localised toxicity in a stagnant water column. Moreover, concentrations will be higher when scaled to higher 21 

rock-fluid ratios and finer grain sizes proposed for mining scenarios. The distance at which dilution is achieved to 22 

meet guidelines is unlikely to be sufficient, indicating a need for the refinement of the mining process. 23 
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1 Introduction 31 

As the global demand for metals continues to grow, driven by advances in technology, so does the market price. 32 

With the majority of economically viable terrestrial resources already exploited and fewer being discovered, 33 

previously disregarded sources of metals are now beginning to be more seriously considered. Heightened interest 34 

in seafloor exploration is highlighted by governments and commercial enterprises already applying for and 35 

receiving licenses for exploration, with 26 exploration licences issued by the International Seabed Authority (ISA) 36 
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as of July 2015, covering 1.2 million square kilometres of the seafloor ((ISA), 2016). Additionally, there are an 37 

estimated 26 exploration projects within national jurisdiction areas of individual states’ economic exclusion zones 38 

(EEZs) (ECORYS, 2014). Further to this, 77 submissions have been made by 67 different territories to extend their 39 

continental shelf and subsequently their economic exclusion zone to lay claim to larger expanses of the seafloor 40 

and associated mineral resources ((CLCS), 2016). Advances in deep-sea oil and gas extraction technology have 41 

paved the way for the economic viability of deep-sea mining. As a result, expectations are high that this industry is 42 

about to emerge.  43 

 44 

Seafloor massive sulphide (SMS) ore deposits and their economic worth has been discussed extensively in the 45 

literature (German et al., 2016; Hannington and Jamieson, 2011; Hannington et al., 2010; Monecke et al., 2016), 46 

with Nautilus Minerals Inc. already in the process of commencing mineral extraction in what would be the world’s 47 

first SMS mine at the Solwara 1 deposit in the Bismarck Sea off Papua New Guinea. In order to support any future 48 

economic potential, our knowledge and understanding of such deposits requires significant improvement with an 49 

associated need for assessment of any environmental impact that any future endeavours may produce.  50 

 51 

Sulphide minerals at both active and inactive hydrothermal seafloor vents undergo chemical interaction with 52 

seawater. This generally results in oxidative weathering (Edwards, 2004a), a process similar to the weathering that 53 

occurs in their terrestrial counterparts – volcanogenic massive sulphide (VMS) deposits. On land in restricted 54 

drainage systems, this occurs more vigorously at decreasing values of pH and can result in acid mine drainage 55 

(AMD), which promotes further dissolution as shown for pyrite in Eq. 1 & 2. 56 

 57 

Equation 1 58 

𝐹𝑒𝑆2 + 3.5𝑂2 (𝑎𝑞) +  𝐻2𝑂 →   𝐹𝑒2+ +  2𝑆𝑂4
2−  + 2𝐻+ 59 

 60 

 61 

Equation 2 62 

𝐹𝑒𝑆2 + 14𝐹𝑒3+ + 8𝐻2𝑂 ⟶ 15𝐹𝑒2+ + 2𝑆𝑂4
2− + 16𝐻+ 63 

 64 



 

 

In contrast, this equivalent weathering process on the seafloor occurs in waters of near neutral pH and of almost 65 

'infinite' volume, so that arising acidity from oxidation is almost immediately buffered and low pH conditions will not 66 

develop over a significant area due to the dilution effect. The reactions result in formation of insoluble oxy-67 

hydroxide minerals such as goethite and hematite at the expense of sulphides such as pyrite; as illustrated in Eq. 68 

3 & 4 (Mills and Elderfield, 1995; Edwards, 2004). These Fe oxide minerals can accumulate as crusts or caps on 69 

sulphide deposits on the seafloor and are referred to as ’gossans’ with the mineral mixtures often referred to as 70 

limonite (Herzig and Hannington, 1995).  71 

 72 

Equation 3 73 

2𝐹𝑒𝑆2 + 7.5𝑂2 (𝑎𝑞) +  4𝐻2𝑂  →   𝐹𝑒2𝑂3 + 4𝑆𝑂4
2− + 8𝐻+ 74 

 75 

Equation 4 76 

𝐹𝑒𝑆2 + 3.75𝑂2(𝑎𝑞) + 3.5𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3 + 2𝑆𝑂4
2− + 4𝐻+ 77 

 78 

 79 

 80 

Based on the natural seafloor weathering process, it is argued that any exposure of sulphide as a result of mining 81 

will have a similar effect: with negligible net release of metals and pH that is buffered to neutral. However, the 82 

process of deep-sea mining has the potential to expose a high surface area of fresh sulphide minerals to the 83 

corrosive effects of seawater, allowing for an anthropogenic leaching of metals that is more akin to acid mine 84 

drainage observed in a terrestrial setting (Gwyther, 2008; Parry, 2008; Simpson et al., 2007). The only current 85 

concept for SMS mining is provided by Nautilus Minerals Inc. and includes an ‘in situ’ extraction phase that 86 

produces 80% <25mm and 20% smaller unknown particle size material, (where 30% of cut material is initially lost 87 

and up to 10% will remain on the seafloor). This is combined with a dewatering process that occurs as the mineral 88 

slurry (1:9 rock to fluid ratio) is carried to the surface, processed above sea level, and the waste water is returned 89 

to 25 to 50 m above the seafloor containing <8 m sulphide particles at 6.35 g/L rock to fluid ratio. Both ‘in situ’ 90 

extraction and dewatering involve the entrainment of fresh sulphide material into an advective environment, with 91 

the dewatering process also providing exposure of sulphide to warmer temperature at the sea surface. 92 

 93 



 

 

If any leaching of metals is not balanced by precipitation of oxides, there is the potential for local accumulation of 94 

dissolved heavy metals in the water column. These metals may bio accumulate in local ecosystems, disperse or 95 

accumulate in the wider ocean or ultimately precipitate elsewhere as oxides. As SMS deposits have been around 96 

for most of the Earth's history, it might be assumed there is equilibrium established between weathering processes 97 

and the local bio-environment. However, the natural weathering process has the potential to be locally 98 

exaggerated by any future mining of SMS deposits and exposure of significant fresh surface area.  99 

 100 

The majority of previous dissolution studies are related to terrestrial acid mine drainage arising from mine flooding 101 

and leaching of tailings piles by meteoric waters (Acero et al., 2009; Bonnissel-Gissinger et al., 1998; Constantin 102 

and Chiriţă, 2013; Descostes et al., 2004; Kwong et al., 2003; McKibben and Barnes, 1986; Moses et al., 1987). A 103 

small number of dissolution studies of specific sulphide minerals in seawater have been undertaken (Bilenker, 104 

2011; Bilenker et al., 2016; Feely et al., 1987; Romano, 2012) and demonstrate the large difference in oxidation 105 

rates between different sulphide minerals,  in particular, the two order of a magnitude difference in abiotic oxidation 106 

rates between pyrrhotite and chalcopyrite. These rates quantitatively predict that any acid production from ‘in situ’ 107 

mining of SMS deposits will be buffered by advecting seawater and that mine waste has the potential to persist on 108 

the seafloor for years without complete oxidative transformation (Bilenker et al., 2016). However, these studies are 109 

typically undertaken with relatively large grain size fractions > 45 m and are representative of ‘in situ’ 110 

mining/extraction rather than the potentially more impactful dewatering and return processes that involves grains < 111 

8m. Furthermore, these studies do not take into consideration any potential galvanic effects that may occur within 112 

a natural SMS ore that contains a range of co-existing sulphide minerals. A galvanic cell occurs where two 113 

different sulphide minerals are touching in the presence of an electrolyte such as seawater. The mineral with the 114 

lower resting potential behaves as an anode and preferentially dissolves, protecting the other mineral which is 115 

behaving as a cathode (Fig 1; Mehta and Murr (1983)). As highlighted by Heidel et al. (2013), pyrite in contact with 116 

most common SMS sulphide minerals should be galvanically protected as a result of a high rest potential 117 

compared to the other most common sulphides (Fig. 1). Within a seafloor context (higher pH’s), this is similarly 118 

expected to be the case; where even though rest potentials are lower, the relative difference of rest potential 119 

between the minerals is constant. Galvanic cells have already been shown to increase dissolution and explain 120 

observations within the context of terrestrial sulphide ore deposits (Abraitis et al., 2004a; Heidel et al., 2013; Koski 121 

et al., 2008; Kwong et al., 2003; Li et al., 2006; Liu et al., 2008) and have also been put forward to explain 122 

observations of the mineralogy of oxidised SMS deposits (Webber et al., 2015). Whilst not attributed to galvanic 123 



 

 

cells, (Edwards et al., 2003) demonstrated that a mixed sulphide ore is notably more reactive on the seafloor than 124 

individual sulphide minerals, albeit in the presence of bacteria.  125 

 126 

SMS deposits are comprised of a variety of mineral grains, each often containing various inclusions, and it is the 127 

galvanic interaction of these phases that may have the ability to substantially increase dissolution rates. The only 128 

leaching study that simulates natural mixed sulphide rich sediments in seawater was undertaken as a result of 129 

prospecting and a regulatory need to provide an environmental impact statement (EIS) for mining the Solwara-1 130 

Deposit, Bismark Sea, Papua New Guinea (Gwyther, 2008).  There are two parts to that study, the first undertaken 131 

by Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Simpson et al., 2007), the 132 

second undertaken by Charles Darwin University (Parry, 2008). Whilst extensive leaching of a range of metals is 133 

observed, the mineralogy of the ore used in experiments is not documented and only the bulk chemistry of the 134 

ores is available (as reported in Supplementary Material A). 135 

 136 

There is clearly a need for further studies that attempt to reproduce the true compositional range of the 137 

materials that will be dispersed into the water column as a result of deep sea mining in a colder, deeper (high 138 

pressure) more saline, and alkaline aqueous medium. This suspended particulate will include a variety of 139 

minerals; many or which will have interfaces (or inclusions) that could lead to galvanic cells. These have the ability 140 

to substantially increase the leaching of metals into the water column (Abraitis et al., 2004b; Heidel et al., 2013; 141 

Koleini et al., 2010; Kwong et al., 2003; Li et al., 2006; Liu et al., 2008; Majuste et al., 2012; Mehta and Murr, 1983; 142 

Subrahmanyam and Forssberg, 1993). There are a multitude of variables to consider in this process including 143 

mineralogy, bulk elemental chemistry, grain size distribution and surface area of the particles, pH, temperature, 144 

pressure, salinity, dissolved oxygen and prevailing ocean currents. Mineralogy and geochemistry varies 145 

considerably across sulphide ore deposits (Cherkashev et al., 2013; Hannington et al., 2005) as a result of factors 146 

including tectonic setting (influencing the composition of the host rock), pressure, pH and temperature. As a result 147 

of this, different extant ore deposits are expected to be oxidising and releasing a variety of different metals into the 148 

oceans, all at different rates. 149 

 150 

In this study, we begin to evaluate the potential for anthropogenic leaching of SMS ore as a result of future 151 

seafloor mining. The important questions are: Whether leaching occurs and to what extent; Are certain deposits 152 

more of an environmental risk to mine and require greater dilutions to meet toxicity guidelines; How will mineralogy 153 



 

 

and geochemistry play a role in this process. To address some of these questions we have performed a series of 154 

leaching experiments that investigate some of these variables for the TAG deposit. In particular, the selected 155 

samples represent the diverse mineralogy from within this single ore deposit.  156 

 157 

Three terms are used within this study to refer to the different processes occurring during leaching. Leaching is 158 

the total loss of mineral solutes by the action of a liquid (seawater). In this context, the loss of minerals (sulphides) 159 

is a result of their oxidative dissolution in seawater. The total amount of metals leached (lost) is not necessarily 160 

dissolved in the subsequent leachate (seawater) due to the precipitation of Fe oxide/oxy-hydroxides and 161 

sequestration of metals onto oxides. The term dissolved refers to the metals remaining in the seawater (after 162 

filtration and removal of oxides). 163 

2 Materials 164 

Samples from the TAG deposits, Mid-Atlantic Ridge (MAR) were supplied through the Integrated Ocean Drilling 165 

Program (IODP). Cores were recovered from five sites along the TAG hydrothermal mound (Fig. 2) during Leg 158 166 

of the IODP between October and November 1994 (Humphris et al., 1996, 1995). The five areas are named TAG-167 

1 to TAG-5, where TAG-1 is located closest to the centre of the mound, approximately 20 metres SE of the black 168 

smoker complex. 3 TAG samples were chosen for experiments as a result of their range in mineralogy as well as 169 

availability of material. TAG samples H and J are taken from TAG-4 area, west of the central black smoker 170 

complex and TAG B is taken from TAG-3, SW of the Kremlin area (Fig. 2).  171 

 172 

An aliquot of each TAG sample was cut, mounted in epoxy and polished as a block for characterisation of the 173 

whole rock sample. The remainder was crushed using a pestle and mortar and dry sieved to a size of <45 µm.  174 

 175 

To ensure that any observed heavy metal leaching is a true reflection of the surface area with clean surface (as 176 

though freshly mined) and to control grain size, all fine sulphide and oxide particles (<2.5 µm) were removed. As a 177 

result of mixed sulphide ores being used in experiments and the high solubility of sphalerite and galena at low pH 178 

(Abraitis et al., 2004b; Heidel et al., 2013; Malmström and Collin, 2004; Weisener et al., 2004), a cleaning method 179 

was adopted from Romano (2012). The cleaning method included 5 minutes of ultra sonication in acetone, a 5 180 

minute ethanol rinse through 2.5 µm filter paper, drying in a desiccator, agitation in 1M HCl for 30 seconds 181 



 

 

followed by a 5 minute soak, with a final ethanol rinse through 2.5 µm filter paper before drying in a vacuum 182 

desiccator.  183 

 184 

This cleaned 2.5 - 45 µm size fraction was always stored at room temperature in a vacuum desiccator to prevent 185 

oxidation, and individual aliquots were removed for characterisation and leaching experiments.  186 

3 Characterisation 187 

TAG samples were characterised as polished blocks as well as cleaned powders prior to leaching experiments. 188 

Unfortunately, it should be noted that reacted sulphide material (and any oxide phases that had formed during the 189 

experiment) was not retrieved or analysed posterior to experiments as it proved too fine to identify individual oxide 190 

particles for characterisation and too small in volume for powder X-Ray diffraction (XRD) analyses.  191 

3.1 Sulphide ore Blocks 192 

Polished blocks of each sample were examined by reflected light microscopy to identify the major ore minerals and 193 

subsequent scanning electron microscopy (SEM) with an energy-dispersive X-ray (EDX) detector for further 194 

identification of phases and their semi-quantitative elemental compositions. The SEM instrument used was a Carl 195 

Zeiss SigmaTM variable pressure SEM with a GeminiTM field emission electron column with Octane-PlusTM 196 

silicon drift detector. The instrument utilises TEAM analytical software from EDAX. Table 1 provides a summary of 197 

the phases identified, their abundances (wt %), textures and the inclusions observed. Representative reflected 198 

light photographs of each sample along with SEM backscattered images are shown in Fig. 3.  199 

 200 

In addition, some laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) spot analysis (wt% 201 

ppm) were collected on some Cu-poor phases (included in Table 2). This data was collected to help provide an 202 

explanation of dissolution results as well as an indication of which minerals are likely to be dissolving. LA-ICP-MS 203 

analyses were carried out using a Nu Instruments ATTOM HR-ICP-MS at GEOMAR, Helmholtz Centre for Ocean 204 

Research, Kiel. For detailed methodology, please refer to Supplementary Material B. 205 

3.2 Sulphide ore powder 206 

Powder XRD was conducted using a Phillips X’Pert Pro diffractometer with a Cu K source, detailed methodology 207 

is outlined in Supplementary Material C. This provided an overall representation of the phases present including 208 



 

 

semi-quantitative analysis presented in Table 1 with individual XRD patterns shown in Supplementary Material C1. 209 

An aliquot of each cleaned sulphide powder was mounted in resin and polished to 1 µm diamond grade. This 210 

allowed for identification of mineralogy of individual grains and inclusions (Fig. 4). Bulk Fe and Cu data of all 211 

powder samples are also presented in Table 1. Samples underwent aqua regia digestion, with arising solutions 212 

analysed on an SPECTRO Ciros SOP inductively coupled plasma - optical emission spectrometer (ICP-OES) at 213 

the University of Kiel, Germany. For a more detailed methodology, please refer to Supplementary Material D. As 214 

there is the potential for a wide distribution of grain sizes in between the resulting 2.5 – 45 µm size fraction of 215 

sulphide powders, surface area analysis was undertaken to highlight any differences between samples (due to 216 

grain size and/or mineralogy) and allows for normalisation of results. The surface area of all cleaned size fractions 217 

were determined using the Brunauer, Emmett and Teller (BET) multiple point N2 surface area method, on a 218 

Quantachrome NOVA 1200 and are quoted in Table 1. 219 

4 Experimental Methods 220 

Seawater solutions were made according to the recipe of Millero (2013). They were found to contain on average 221 

391.96±27.66 ppb Fe, 172.63±39.16 ppb Cu and 73.85±19.41 ppb Pb as contaminants. Approximately 0.6 - 1 g 222 

(dependent on availability) of natural TAG sulphide ore of 2.5 - 45 µm was added to 500 mL of seawater. 223 

Conductivity, pH and dissolved oxygen (DO) readings were taken throughout the experiments using a HACH 224 

meter. Conductivity was calibrated at 12.85 and 53.0 mS cm-1 and pH measurement was calibrated at 4.01 and 9. 225 

All experiments were stirred using a magnetic flea, the rate of stirring was chosen so that particles remained 226 

suspended, analogous to a dewatering of the ship-board ore in a mining context. Temperatures were held at 227 

approximately 12 ± 1 °C (simulating the sea surface) using a refrigeration unit. Dissolved oxygen concentrations 228 

were controlled by varying the ratio of compressed air to nitrogen using sintered flow meters and were held at 229 

approximately 9.0 mg L-1 across the duration of each experiment. This oxygen concentration is representative of 230 

concentrations within proximity of the TAG hydrothermal field, where values in the Atlantic (A05) eWoce database, 231 

show a range between 8.2 and 8.856 mg L-1 with the highest concentration observed at 5 km depth at a 232 

temperature of 1.5 °C (Schlitzer, 2000). Features of individual experimental runs are summarised in Table 3. 233 

 234 

During each experimental run, trace amounts of sulphide material were lost onto the surfaces of monitoring probes 235 

and during sample filtration. In order to account for this, the wastewater was filtered, desiccated and weighed, and 236 

the value subtracted from the initial weight, as shown in Table 3. 237 



 

 

4.1 Sampling protocol 238 

Dissolution experiments adopted a semi-batch design, as described in Rimstidt and Newcomb (1993) and Salmon 239 

and Malmström (2006). Seawater samples (13 mL for metal analysis) were removed using a 10 mL mechanical 240 

pipette (with an error of 0.5%) for analyses. 13 mL of fresh seawater is added to replace the volume lost at each 241 

sampling interval (total of 156 mL over the course of each experiment), with any resultant dilution corrected for 242 

(see Section 4.3).  243 

 244 

Removed batch samples were filtered using a 0.22 µm pore size to remove all sulphide material and halt any 245 

further reaction. Sampling occurred every 10 minutes for the first hour, every half an hour for the following two 246 

hours and every hour up to the full 5 hours run time. 5 hours run time was chosen to be representative of the 247 

amount of time it would take for a steady state to occur between the sulphide and seawater and also reflects the 248 

period of agitation related to SMS mining.  249 

 250 

Extracted aliquots were analysed using an Agilent 710 ICP-OES. Filtered (0.22 m) solutions were acidified with 251 

2% HNO3 in a 2:1 ratio (3 mL sample to 6 mL of nitric acid) to prevent metals from precipitating out and to lower 252 

the total dissolved solids to <1%. All samples were analysed for Fe (234.350), Cu (327.395), and Pb (220.353) 253 

with chosen emission lines in brackets. Units of measurement are g/L, referred to here as ppb. Standards for 254 

metals ranged from 1-10 ppm. Limits of detection for the ICP-OES for Fe, Cu, and Pb are 0.70, 1.22, and 6.52 ppb 255 

respectively. 256 

4.2 Corrections 257 

To account for 13 mL of sample removal and subsequent dilution with 13 mL of fresh seawater, the equations of 258 

Salmon and Malmström (2006) were used (Eq. 5). This calculation assumes that elements measured in previous 259 

samples remain in solution. The accumulated amount, N, of element j remaining in solution up to sample k, 260 

calculated from the measured concentration, Cmeas, is determined by: 261 

 262 

Equation 5 263 

𝑁𝑘,𝑗 = [𝐶𝑘,𝑗,𝑚𝑒𝑎𝑠(𝑉0,𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑘,𝑟𝑒𝑡) +  ∑ 𝐶𝑘,𝑗,𝑚𝑒𝑎𝑠𝑉𝑠,𝑠𝑎𝑚𝑝𝑙𝑒 

𝑘

𝑠=1
] 264 

 265 



 

 

All analysed solutions were also corrected for the dilution with nitric acid and initial seawater composition (including 266 

removing seawater starting concentrations of Fe, Cu and Pb). These ‘corrected’ concentrations will henceforth be 267 

referred to as ‘measured’ concentrations. 268 

 269 

Measured concentrations were subsequently combined with other data (mass, surface area) in order to highlight 270 

the implications for SMS mining. To identify the effect that bulk chemistry and different mineral mixtures (and 271 

galvanic effects) exerted on leaching and metals observed in solution, absolute measured concentrations (ppb) 272 

require a correction for the variability of sample mass used in each experiment. This correction is outlined in Eq. 1 273 

in Supplementary Material E. To assess the potential metal leaching during mining scenarios, absolute measured 274 

concentrations (ppb) require a series of corrections including 1) conversion to mol 2) correction for volume of 275 

seawater used and 3) a correction for the sample mass and surface area. These correction procedures are 276 

outlined in Eq. 2 and Eq. 3 in Supplementary Material E. In this way, results can be extrapolated for leaching 277 

outside of the fixed rock to fluid ratio (g/L) using here.  278 

5 Results 279 

Actual measured concentrations and errors (ppb), without corrections for surface area, mass of ore and volume of 280 

seawater are presented in Supplementary Material F1. However to compare between different samples it is more 281 

informative to correct these values to reflect the mass (g) of ore used (Section 5.1) as well as the different 282 

available reactive surface areas (Section 5.1) 283 

5.1 Concentrations corrected for mass, volume and surface area (µmol/m2 ) 284 

Measured concentrations and errors (ppb) converted to mol and corrected for surface area, volume of seawater 285 

and mass of ore used are presented in Figure 5, using data produced in Supplementary Material F2. Shown for 286 

reference are representative maximum solubility’s of Cu, Fe and Pb in seawater taken from experimental and 287 

calculation studies (Angel et al., 2015; Franklin et al., 2001; Liu and Millero, 2002). As noted in Figure 5 and 288 

discussed in Section 6, all elements (but particular Fe) may show an increase in the seawater as the metal is 289 

leached and/or a decrease as the metal is removed from solution by precipitation of or absorption onto an oxide. 290 



 

 

5.1.1 Cu 291 

All samples show an initial rapid leach of Cu producing a concentration peak measured at the beginning of each 292 

experiment but differing in magnitude and time between samples. The maximum concentration peaks for Cu are 293 

up to: 3.89±0.07, 0.47±0.26 and 2.37±0.09 µmol/m2 for TAG-B, H, and J respectively. This initial leach then drops 294 

significantly and remains at a more consistent level. After 30 minutes, the average dissolved Cu was 0.09±0.018, -295 

0.04±0.33 and 2.41±0.06 µmol/m2 for TAG-B, H and J. Whilst these are average values, the experiment with TAG-296 

B shows a subsequent slow decrease in aqueous Cu down to 0.01±0.01 (~0 within error). This is in contrast to the 297 

experiment with TAG-H where there is overall negligible change in Cu, with only spikes of 0.27±0.28 and 298 

0.41±0.37 µmol/m2 that are within error of 0 and 0.04 µmol/m2 respectively. TAG-J is the only experiment where 299 

there is an initial leaching of Cu that does not decrease to 0 throughout the 300-minute sampling window. Within 300 

this average of 2.37±0.06, there is a peak of 2.69±0.06 µmol/m2. From the 90 minute sampling interval onwards, 301 

the amount of Cu dissolved decreases from this peak value but only down to 2.04±0.06 µmol/m2. 302 

5.1.2 Fe 303 

All samples show an initial leach of Fe to the seawater producing a peak at the beginning of each experiment similar 304 

to the observed behaviour of Cu, except here Fe concentrations exceed the solubility limit of seawater. Again, 305 

similar to the Cu peak, the magnitude of the Fe peak differs between samples. The initial peaks of Fe are 306 

1.63±0.04, 0.47±0.19 and 0.54±0.12 µmol/m2 for TAG-B, H and J respectively. This initial dissolved concentration 307 

then drops to negative Fe values after the 20-minute sampling interval for experiments with TAG-B and TAG-H 308 

and after the 90-minute sampling interval with TAG-J.  At the 120-minute sampling interval, TAG-H displays a spike 309 

in Fe concentration at 0.99 ±0.19 µmol/m2 which does not correspond to either of the Cu spikes of the same 310 

experiment. The fall to negative values (below initial seawater background) is consistent with the precipitation of Fe 311 

oxides and exceedance of the solubility limit of Fe in seawater. 312 

5.1.3 Pb 313 

Whilst there is an initial leaching of Pb in experiments with TAG-H and TAG-J, in contrast to the behaviour of Cu 314 

and Fe in the same experiments, the initial dissolved Pb is comparable to later sampling intervals. The initial peaks 315 

of Pb are 0.18±0.16 and 0.20±0.13 µmol/m2 for TAG-H and J respectively. TAG-B shows negligible leaching 316 

initially and throughout the experiment with the exception of small spikes at the 20 and 90-minute sampling 317 

interval, which are within error of 0.   318 



 

 

 319 

TAG-H and TAG-J show consistent net dissolved Pb throughout the entirety of the experiments. Whilst there are 320 

fluctuations during each experiment, there is no overall increase or decrease in the dissolved concentrations of Pb. 321 

Across the whole experiment there is an average dissolved concentration of 0.17±0.16 µmol/m2 and 0.16±0.11 322 

µmol/m2 of Pb for TAG-H and TAG-J respectively. However, the maximum Pb dissolved throughout the 300 323 

minute-sampling interval is 0.38±0.12 µmol/m2 versus 0.27±0.08 µmol/m2 for TAG-H and TAG-J respectively. 324 

5.2 Concentrations corrected for mass (ppb / g) 325 

Results presented in µmol/m2 cannot be used to directly infer the effects of mineral mixtures, as the surface area of 326 

the ore used within the correction for each sample is a summation of the surface area of multiple different mineral 327 

phases. Instead, measured concentrations and errors (ppb) corrected for grams of ore used in each experiment 328 

are presented in Figure 6. Data are presented in Supplementary Material F3. Furthermore, data presented in this 329 

way can provide an idea of the actual magnitude of dissolved metals when scaled up to ore production quantities. 330 

 331 

TAG-J shows the highest dissolved concentration of metals in seawater, on average (from the 30 minute sampling 332 

interval) 186.01±4.96 ppb Cu per gram of ore and 39.45±26.54 ppb Pb per gram of ore. TAG-H shows similar 333 

concentrations of Pb to TAG-J, with an average of 42.78±37.74 ppb per gram of ore after the 30-minute sampling 334 

interval.  335 

6 Discussion 336 

Seafloor SMS material that is disturbed during in situ mining, along with fine particulate SMS materials returned to 337 

the ocean after surface processing will initially be suspended in the water column as a sediment plume and may 338 

be dispersed into the wider ocean, but will ultimately settle out onto the seafloor. Whilst there is still the potential 339 

for toxicity and leaching, the in situ extraction is argued to pose less of a risk as a result of the larger grain sizes of 340 

the arising particulates (less surface area available for leaching as well as a quicker settling rate, reducing the time 341 

the sulphide is exposed for leaching) (Gwyther, 2008). In particular, a study by Bilenker et al. (2016) suggests that 342 

acid generation during in situ mining is slow and unlikely to be problematic.   343 

 344 

Leaching experiments presented in this study are most representative of the dewatering process during ship-board 345 

processing and return of material to the sea, where finer particles are exposed to seawater. During exposure there 346 



 

 

is potential for these fine sulphide particles to experience more substantial dissolution and release of heavy 347 

metals, both locally or some distance into the open sea. Quantification of the distal extent of such plumes and 348 

subsequent leaching is difficult to speculate upon without modelling of site-specific plume generation. To this end, 349 

stochastic hydrodynamic modelling from Gilbert et al. (2008) was used to investigate the impact of discharging 350 

return water at Solwara 1, and the results are applicable to experiments here. The modelling involved a range of 351 

variables (dilution rates, temperatures) and found that plumes would dissipate and achieve a dilution of 5000 times 352 

within 0.6 km from the point of discharge. The estimated maximum sub-sea plume thickness within the water 353 

column is 175 m.  354 

 355 

Whilst the Gilbert et al. (2008) model demonstrates that the concentration of fine material (<8 µm) dilutes fairly 356 

rapidly with distal extent, the time it will take for it to fall to the seafloor (and out of the water column) from the 357 

designated 25 to 50 m height above the seafloor is not stated. During this time, it will be exposed to seawater, 358 

allowing leaching to progress. Experiments in this study demonstrate the early dissolution of metals, with high-359 

resolution time steps. Gilbert et al. (2008) state that over the lifetime of the mining operation (20 months), the peak 360 

bottom thickness from the settling fine material is less than 0.1 mm. Based on assumptions made in the modelling 361 

as applied to the EIS and using Stokes Law, an 8 µm pyrite particle (density of 5 g/cm3) would take 1.87 days to 362 

settle out from a height of 50 m. However, a 0.1 µm pyrite particle, would take 12010 days to settle from a 50 m 363 

height above the seafloor. Without a better understanding of the grain size distribution within the <8 µm size 364 

bracket, it is difficult to quantify the amount of time sulphide material will ultimately persist and leach in the water 365 

column. Furthermore, even after any fine material has settled, whilst the surface area exposed has been reduced, 366 

there is still potential for further leaching of metals as the material lies as a poorly consolidated seafloor deposit.  367 

 368 

The experiments of this study simulate the consistent stirring of sediments and as a result, the ore has the 369 

maximum exposure for leaching. This is representative of the early leaching process that will occur prior to settling 370 

or dilution, especially in the finer fraction. 371 

 372 

Within the first 10 minutes, all samples show initial dissolved concentrations of Cu and Fe, at varying magnitudes 373 

(Fig. 5). Fig. 7 demonstrates the average dissolved metal as a proportion of the bulk concentration, expressed as a 374 

percentage. Whilst percentage dissolved values are in themselves small, it is important to note the high bulk 375 

concentrations of heavy metals in the TAG samples; making this small loss significant in terms of toxicity. TAG-H 376 



 

 

demonstrates the highest initial percentage loss of Cu and Pb, whilst TAG-B shows a high loss of Cu and TAG-J a 377 

loss of Pb.  378 

 379 

Using the data of this study as a ‘realistic’ example (although this ignores any abiotic contribution), these results 380 

suggest that a total of 0.04 and 0.002 wt% of Cu, Fe and Pb will be leached from a deposit such as TAG-H and 381 

TAG-B respectively, at the initial stages of processing (Fig. 7). However, with removal of both Cu and Fe from 382 

solution by oxide precipitation after 10 minutes (based on exceedance of solubility limit and observation), this 383 

effect is reduced even more dilution subsequently occurs.  384 

 385 

A deposit such as TAG-J is more concerning. 0.03 wt% of Cu, Fe and Pb will be lost in the initial stages of 386 

processing (Fig. 7a), but leaching of Cu and Pb will continue (Fig. 7b) until either the particle interface has been 387 

fully dissolved or an oxide forms on the particle surface and insulates it from the seawater (passivation on the 388 

surface, which is expected in most cases). However, the fact that precipitation of oxides is not shown to remove 389 

the dissolved metals for TAG-J is a cause for concern. In the TAG experiments where a loss is observed, Pb and 390 

Cu have the highest percentage dissolved, indicating their higher propensity to be leached and stay in solution 391 

compared to Fe. This is also observed in experiments undertaken in the EIS (see Fig. 7). 392 

 393 

Sample TAG-J shows the only sustained dissolved concentrations of all the experiments in this study, with both 394 

Cu and Pb present in seawater, remaining at a significant level (Fig. 5, 6 and 7). Whilst all three TAG samples 395 

contain similar concentrations of Pb (100-200 ppm, Table 1), it is only TAG-H and TAG-J that show leaching of Pb 396 

into seawater (both at ~ 40 ppb). TAG-B, a sample that contains a similar, if not higher, total amount of 397 

chalcopyrite and bulk Cu as TAG-J (Table 1), shows initial leaching of Cu (Fig. 5), but this is removed after 30 398 

minutes.  399 

 400 

Due to the design of these experiments, precipitations of metal oxides are guaranteed under these high pH 401 

conditions in all experiments, mainly precipitating Fe-oxide, but also having the potential to sequester and remove 402 

Cu and Pb. All were run at similar oxygen concentrations where oxygen was never limited and kept constant 403 

throughout, ensuring the formation of oxide precipitates throughout the course of experiments, (Table 3), yet both 404 

TAG-J and TAG-H have sustained dissolved metals that are not removed from solution. This indicates that the 405 

leaching of Cu from TAG-J is at a higher magnitude than any removal through oxidation (due to mineralogy or 406 



 

 

galvanic effects) and that the method of removal of Cu and Pb from TAG-B is different to TAG-J and TAG-H (due 407 

to mineralogy). This is discussed further in Section 6.1. Either way, the leaching results demonstrate that bulk 408 

chemistry does not dictate the concentration of metals dissolved into seawater. Instead, mineralogy and/or 409 

possible galvanic effects are the driving forces behind the type and concentration of metals remaining in seawater 410 

after leaching.  411 

 412 

As shown in Fig. 6a, b and c, the high concentrations of Fe and Cu dissolved in experiment TAG-J are very similar 413 

to those observed in experiments from the EIS. The figure shows results from two different published experimental 414 

datasets that have the most similar run conditions to those used in the current study. The specific mineralogy of 415 

the samples used within the EIS was not presented for either the experiments of Parry (2008) or Simpson et al. 416 

(2007), although the overall chemistry was provided and is reproduced in Supplementary Material A. Based on this 417 

chemistry, the mineralogy is substantially different between each of their experiments.  418 

 419 

Data from Parry (2008) uses predominantly Fe-rich samples (31.6 % Fe, 5.13 % Cu, 3670 ppm Zn) similar to our 420 

experiments with deposits from TAG (Table 1, bulk Fe and Cu) with Cu and Pb dissolved at similar concentrations 421 

as TAG-J, despite a larger grain size, and higher temperature and rock-fluid ratio. Studies by Moses and Herman 422 

(1991) and Simpson et al. (2007) indicate a linear relationship between rock to fluid ratio and dissolved metals, 423 

allowing for data to be scaled to take into consideration the difference in rock-fluid ratio between studies. When 424 

data from Parry (2008) is scaled to the rock-fluid ratio used in this study (2 g/L), concentrations drop to ~3 ppb for 425 

Cu and ~2 ppb for Pb. This lower concentration/lower percentage loss of bulk observed in the EIS data when 426 

scaled to 2 g/L (Fig. 6 & 7) can be explained by the larger grain size (less surface area) used in experiments. 427 

 428 

The ore used in experiments by Simpson et al. (2007) has significantly higher bulk Cu, Zn, Pb and As than ore 429 

used by Parry (2008) and the TAG samples used here (Supplementary Material A). Despite this, the dissolved Cu 430 

and Pb is much lower than the comparable experiments with Fe-rich ore as shown in Fig. 7. This is comparable to 431 

our results, where bulk chemistry does not define the metals that are leached and remain in solution. What is not 432 

shown in this figure, is the high dissolved concentrations of Zn and As during the EIS experiment with the Cu-Zn-433 

Pb rich ore (Supplementary Material A). This could imply a preferential dissolution of Zn and As rich minerals (e.g. 434 

sphalerite and arsenopyrite/As sulfosalts) over Cu and Fe, suggesting either galvanic cells are at play or that the 435 

dissolution rate of Zn and As bearing minerals is quicker. 436 



 

 

 437 

Based on the effect differing mineralogy has on the leaching of SMS ores presented in this study, it is imperative 438 

that extensive tests with the full range of mineralogy and geochemistry of ore mined are undertaken prior to any 439 

future mining of a deposit. Results where only one type of ore are utilised in experiments are applicable to only a 440 

particular area of a deposit and are not ubiquitously transferable.  441 

6.1 The effect of mineralogy on leaching and dissolved metals 442 

By combining the observed mineral proportions and bulk chemistry from Table 1 with the magnitude of metal 443 

released to the seawater (ppb), corrected for grams of ore tested (Fig. 6), it should be possible to at least 444 

speculate on the effect that mineralogy, texture and possible galvanic reactions might have on the ‘leaching’ 445 

process. It must be remembered that the ‘leaching’ simulated here and in particular the monitoring of metal release 446 

with time as sulphide dissolves, will be counteracted by subsequent oxide precipitation in these experiments. The 447 

measured metals in solution can only give a net view of the two competing processes. The dissolved oxygen levels 448 

in the seawater have been fixed at a value that is representative of the TAG field in these experiments (Schlitzer, 449 

2000) although this could be a local variable. Fe is the major contributor to the precipitate (due to its low solubility 450 

in seawater), forming Fe oxides/oxy-hydroxides. The 'absorption' of other heavy metals (e.g. Cu, Pb) onto Fe 451 

oxides and oxy-hydroxides has been extensively demonstrated in the literature (Benjamin and Leckie, 1981; 452 

Davranche and Bollinger, 2000; Grybos et al., 2007; Jong and Parry, 2004; Liu and Huang, 2003). Absorption of 453 

trace metals onto (and subsequently into) iron oxides and oxy-hydroxides is observed to be rapid, on the time 454 

scale of hours, (Ahmad et al., 2012; Balistrieri and Murray, 1982) so it likely to be an important process on the 455 

timescale of this study as well as the actual mining operation. It is unfortunate that design of the current study 456 

produces too small an amount of precipitate to collect and measure the trace metal composition. 457 

 458 

In addition to the new Fe-oxide precipitation, some ore samples such as TAG-B initially contain a high proportion 459 

of Fe oxides and oxy-hydroxides (Fig. 3, Table 1) that would represent a large surface area of the processed ore 460 

material, and will be present at the beginning of our leaching experiments. This could represent either a source to 461 

release metals or remove them in a similar way to the newly formed Fe precipitate. In the latter case, the presence 462 

of Fe oxides/oxy-hydroxides within the deposit prior to mining (likely in the case of an inactive SMS deposit) could 463 

be advantageous in reducing the environmental toxicity associated with mining.  464 

 465 



 

 

Samples have all been crushed and sieved to the same grain size fraction (2.5 to 45 µm) to remove this as a 466 

variable between experiments. Whilst there is the potential a range of distributions within this size fraction, this 467 

potential should be eliminated during the normalisation of the data to the surface area of each specific sample (Fig. 468 

5). 469 

 470 

All samples here show an initial increase in Fe, which is undoubtedly caused by sulphide ore dissolution. This is 471 

followed by a rapid decrease to background levels in a few hours, although TAG-B and H fall more rapidly than 472 

TAG-J. The solutions are observed to fall below the original background seawater levels (Fig. 5 and 6), indicating 473 

that in some cases the original seawater Fe is removed from solution (oxidised) also. The dissolved oxygen 474 

concentration is kept constant throughout the experiment, ensuring they are never oxygen limited and it is possible 475 

to continuously form oxides as would be expected in the natural environment. The fall in Fe is either due to a one 476 

off initial release and subsequent precipitation of Fe as an oxide with time, or an increase in the precipitation rate 477 

over the continuous release rate. 478 

 479 

All three TAG samples contain similar Pb concentrations (100-200 ppm), yet only samples TAG-H and J show 480 

leaching. No galena or major Pb bearing minerals were identified in the samples, indicating that the Pb must arise 481 

from the lattice sites of sulphide phases (Table 2), though it is not possible to identify the particular mineral phase 482 

contributing the Pb from this data alone. The observation that TAG-B has negligible Pb dissolved whilst 483 

demonstrating similar bulk Pb suggests that Pb is present as a phase that is not leaching or more stable (e.g. 484 

sorbed onto present Fe oxy-hydroxide).  485 

 486 

Based on bulk analysis alone (Table 1), it might be expected that TAG-B would demonstrate the highest Cu 487 

release and concentration in the seawater. Whilst it does leach the highest initial concentration of Cu (Fig. 5), it is 488 

TAG-J that maintains the higher dissolved Cu throughout the 300-minute experiment. It is clear from the TAG-J 489 

experiment that the formation of oxides does not keep up with the leaching of Cu, resulting in consistently high 490 

dissolved Cu. The disparity between TAG-B and J can ultimately be explained by either 1) a different Cu 491 

host/source, 2) a difference in mechanism leaching Cu, 3) a difference in mechanism removing Cu or 4) a 492 

difference in exhaustion/isolation (passivation) of Cu host/source. These possibilities are discussed in further detail 493 

below. 494 



 

 

6.1.1 Hosts and sources of Cu 495 

Chalcopyrite is the largest source of Cu observed in both TAG-B and TAG-J (6.2 and 5.6 wt% respectively). In 496 

reality, chalcopyrite has been shown to have at least an order of a magnitude slower dissolution rate than both 497 

pyrite and marcasite (Bilenker, 2011; Feely et al., 1987; Romano, 2012). As a consequence of this, a sample such 498 

as TAG-H (~42% marcasite) or TAG-J (83.8% pyrite) might be expected to dissolve the fastest and not only leach 499 

the most Fe, but also a certain amount of Cu, which is present at trace levels in the mineral lattice (see Table 2). 500 

This then could become a more important source of Cu than the major host chalcopyrite. On closer inspection, 501 

marcasite can be ruled out on the basis of two pieces of evidence: 1) low concentrations of Cu in its lattice (77.20 502 

ppm, Table 2) and 2) TAG-H has a dominant marcasite mineralogy (~42%) with similar concentrations of Cu in its 503 

lattice to TAG-J (70.75 ppm) but shows no significant release of Cu (Fig. 5).  504 

 505 

The role of pyrite can also be assessed. As shown in Table 2, the TAG-J pyrite contains higher concentrations of 506 

Cu in its lattice (715.30 ppm) than the pyrite in TAG-B (461.20 ppm). As TAG-J also contains 1.5 times more pyrite 507 

than TAG-B, it might appear to be a plausible source of Cu during the leaching of TAG-J. However, with high 508 

concentrations of pyrite (24.4 wt%) and high Cu in its lattice, it would be expected that TAG-B would also display 509 

consistent dissolved concentrations of Cu if pyrite breakdown were the main Cu release mechanism and 510 

proceeded at the same rate in both samples. Furthermore, if pyrite were the source in both, it would be expected 511 

that TAG-J would have an initial higher leach than TAG-B, which is not observed. Based on these observations, it 512 

is difficult to appeal to pyrite (or marcasite) as the source of released Cu. 513 

 514 

Another plausible Cu source to consider and explain the disparity between TAG-J and TAG-B, would be secondary 515 

formed Cu minerals. They have been demonstrated to have higher dissolution rates than chalcopyrite, but how this 516 

rate compares to pyrite and marcasite is unknown (Fullston et al., 1999).  TAG-J was shown to contain rare 517 

covellite (CuS) during reflected light microscopy and XRD analysis at ~1.4 wt%. The leaching of covellite could 518 

provide a tenuous explanation for the heightened dissolved Cu in TAG-J over TAG-B, but still does not explain the 519 

higher initial leach of Cu during the TAG-B experiment.  520 

 521 

The observation of dissolved Cu decreasing throughout the experiment with TAG-B could suggest exhaustion of a 522 

Cu source or its isolation from the seawater. However, it would be difficult to explain why any reduction in 523 

availability is occurring throughout the experiment in TAG-B and not TAG-J based on the constant dissolved 524 

oxygen concentrations. For example, if passivation on the surface of Cu sulphide minerals (due to the formation of 525 



 

 

oxides) were to occur and reduce the availability of Cu, it would be expected in both TAG-B and TAG-J 526 

experiments. Another phenomenon with the potential to explain the disparity in dissolved Cu over time between 527 

TAG-J and TAG-B is absorption, discussed earlier.  528 

 529 

TAG-B contains a high quantity of Fe-oxides and oxy-hydroxides (Fig. 3) that would be present during leaching. 530 

Absorption of heavy metals onto Fe oxides and oxy-hydroxides could account for the subsequent drop in Cu over 531 

time observed during the experiment with TAG-B (Fig. 5). New oxide phases that form throughout the TAG-J 532 

experiment are unlikely to provide as high of a surface area for absorption as the already established oxides 533 

present in TAG-B do. If this is the case, the presence of Fe oxides/oxy-hydroxides within the deposit prior to 534 

mining (likely in the case of an inactive SMS deposit) could be advantageous in reducing the environmental impact 535 

associated with mining. 536 

6.1.2 Galvanic cells 537 

Notwithstanding the presence of covellite or the process of absorption, dissolution rates of the major sulphide 538 

minerals alone cannot explain the observations found in this study. In terms of alternative causal effects, galvanic 539 

cells have been shown to significantly increase dissolution (Abraitis et al., 2004a; Heidel et al., 2013; Koski et al., 540 

2008; Kwong et al., 2003; Li et al., 2006; Liu et al., 2008). 541 

 542 

Whilst it is unlikely that any separate grains would be able to stay in contact for long enough to create a cell in 543 

these stirred experiments, individual particles composed of multiple sulphide phases can create a cell with 544 

seawater.  Both TAG-B and TAG-J commonly demonstrate the occurrence of sulphide inclusions in whole rock 545 

samples and cleaned sulphide ore powders (some less than 1 µm) of chalcopyrite in pyrite/marcasite grains and 546 

vice versa (see Fig. 3 and 4), allowing galvanic cells the ability to form during leaching experiments. In this 547 

scenario, the lower potential of chalcopyrite (Fig. 1) would cause it to be preferentially dissolved relative to pyrite 548 

(or marcasite), releasing Cu and some Fe into solution. 549 

 550 

TAG-B has much less pyrite than TAG-J (24.4% vs. 84% pyrite plus 6% marcasite), and consequently, fewer 551 

inclusions to allow for galvanic cells to occur. If galvanic cells were playing a role, it would be expected that both 552 

TAG-B and TAG-J would display a leach of Cu, just at a higher magnitude in TAG-J, which is not observed in the 553 

initial leach (TAG-B has a higher initial leach). However, this could be easily explained by an initial leach of 554 



 

 

chalcopyrite in both that slows with time (producing the higher initial leach of Cu in TAG-B), with galvanic cells in 555 

TAG-J producing the higher dissolved Cu concentrations observed later on. 556 

 557 

Exact quantification of the extent to which galvanic coupling, and mineralogy (and any associated absorption) is 558 

contributing to dissolution role is not possible within the scope of this study, simply because there are numerous 559 

inseparable variables at play. Nonetheless their impact on the leaching of SMS ore needs to be considered and 560 

accounted for in environmental impact predictions. 561 

6.2 Toxicity potential 562 

The toxicity induced by sulphide dissolution may have some detrimental impact on the environment around SMS 563 

deposits and associated ecosystems, although this will ultimately be highly variable. It has been speculated that 564 

any high concentrations of heavy metals that are leached or present in the plume will pose minimal risk to a faunal 565 

system already adapted to active SMS deposits (Simpson et al., 2007; Gwyther, 2008; Parry, 2008; Sander and 566 

Koschinsky, 2011). However the most distal ’background’ fauna may not have developed such survival strategies. 567 

Furthermore, if mining occurs at inactive SMS deposits where adaptation to toxicity is lower, the impact to this 568 

specific ecosystem may be more significant; unless these ecosystems have a high recovery rate. 569 

 570 

Initial high metal concentrations (within 10 minutes) are unlikely to cause serious problem for fauna as they are 571 

quickly removed via precipitation of oxides, with suffocation from plumes a more serious concern in the initial 572 

stages. Whilst the average percentage loss (Fig. 7) is very small across all metals and samples (<0.1%), the 573 

sustained dissolved metals at a ppb level is still considered significant due to their exceedance of both Australian 574 

and New Zealand water quality (ANZECC) and UK Marine Special Areas of Conservation (SAC) environmental 575 

guidelines. It is difficult to apply these guidelines to black smoker environments, where background toxicant 576 

concentrations vary significantly and the ecosystems are dramatically different to ’normal’ marine ecosystems. In 577 

fact, no guidelines exist for such environments. For purposes of discussion and to compare experiments 578 

undertaken here with those undertaken in the EIS by Solwara-1, the minimum guideline for each metal has been 579 

chosen (99% protection, ANZECC). Guidelines are 0.3 and 2.2 ppb for Cu and Pb respectively. 580 

 581 

Based on the current mining concept outlined by Nautilus Minerals for their EIS, the return water will include solid 582 

material <8 µm in diameter with an expected total dissolved solids (TDS) of 6.35 g/L (Gwyther, 2008) compared to 583 



 

 

the 2 g/L of this study. When experiments in this study are scaled to the rock-fluid ratio outlined in the EIS 584 

(Supplementary Material G), Cu concentrations observations in TAG-J would increase to an average of 590.615.7 585 

and Pb to 133.484.8 ppb. TAG-H’s Pb concentrations would increase to an average of 135.8119.8 ppb. These 586 

are well above guidelines before dilution is taken into consideration. 587 

 588 

Based on experiments with 2 g/L, TAG-J would require 620 times dilution to reduce Cu concentrations to within the 589 

0.3 ppb ANZECC guideline. When scaled to the expected 6.35 g/L rock to fluid ratio, a 1968 times dilution would 590 

be required during mining. For TAG-H at 2g/L, a 19.4 times dilution would be required to bring the Pb 591 

concentration in line with the 2.2 ppb UK-SAC guideline. This would increase to 61.7 times if scaling the 592 

concentrations to the 6.35 g/L ratio. Elutriate experiments undertaken by Simpson et al. (2007) find that dilutions of 593 

greater than 4000 times may be necessary for samples from Solwara, double the values suggested by this study. 594 

The higher dilution requirement is likely to accommodate the high observed concentrations of As and Zn in their 595 

dataset, elements which were not considered in this study. Whilst it is likely that As and Zn are present in higher 596 

concentrations at Solwara than the TAG samples used here, data from Solwara experiments and trace element 597 

studies (e.g. Hannington et al. (1991) and Wohlgemuth-Ueberwasser et al. (2015)) suggest that As, Zn, Co and Cd 598 

could be leached during mining, and thus will require further investigation.  599 

 600 

If the 2 g/L rock to fluid ratio is kept constant, localised toxicity would be expected in a stagnant water column. 601 

However, in reality, dilution is expected where both plumes created by dewatering or extraction and deep-sea 602 

currents have the ability to entrain fresh seawater. Hydrodynamic modelling can give an indication of dilution of 603 

heavy metal concentration with distance but is site specific and does not take into consideration the time it would 604 

take for dilution to occur. Gilbert et al. (2008) demonstrate a 600-fold volume dilution would be achieved within 85 605 

m of the point of discharge at Solwara-1. However if TAG dissolved metal concentrations of this study were scaled 606 

to 6.35 g/L, a 2000 fold volume dilution is required which would only be achieved at 600 m from the discharge. 607 

Ultimately, the distance at which dilution is achieved to meet guidelines may not be sufficient, indicating either the 608 

potential need for ship-board dilution prior to the return of waste water or refinement of the mining process. Of 609 

more concern is that this does not include any ore particulate remaining in the diluted seawater volume, which may 610 

continue to release further metals to solution during any dilution process. 611 

 612 



 

 

In terms of total input into the ecosystem, the EIS for the proposed Solwara-1 deposit in Papua New Guinea 613 

currently suggests a footprint of approximately 0.112 km2  will be mined over five mineralised areas. If an area of 614 

that size at TAG was to be mined and was identical in mineralogy, bulk chemistry and texture to TAG-J, there 615 

would be a cumulative total of 0.224 moles of Cu (14230 ppm) added to the seawater throughout the mining 616 

project.  617 

  618 

Application of the data from this study and the Solwara-1 EIS might be ‘conservative’ if a finer ore size fraction (<8 619 

µm) is taken into consideration. This could result in a significantly higher surface area and higher leaching rate. 620 

The potential for toxicity during dewatering would be far more substantial than observed during the course of these 621 

experiments. In addition, there are SMS deposits that are known to contain considerably higher concentrations of 622 

toxic metals (As, Pb, Sb, Zn, Co, Cd, Ni and Hg) than TAG (e.g. mafic-hosted, felsic-hosted, young, back-arc basin 623 

settings (Herzig and Hannington, 1995)), further increasing the potential for environmental impact.  624 

 625 

Finally, it is widely accepted that Fe-oxidising bacteria play a significant role during the weathering (oxidative 626 

dissolution) of seafloor sulphide ore deposits (Edwards et al., 2003). Rimstidt (1994), Plumlee et al. (1999), 627 

Corkhill (2008) and Koski et al. (2008), all suggest that redox reactions utilising Fe3+ produced by bacteria catalyse 628 

reaction rates of sphalerite, chalcopyrite, enargite and arsenopyrite. Lizama and Suzuki (1991), show that 629 

Thiobacillus ferroxidans and Thiobacillus thiooxidans both increase the leaching rates from sulphide minerals 630 

(pyrite, chalcopyrite, sphalerite) by up to 44.2% in some cases. It has also been reported in numerous dissolution 631 

studies (Ahonen et al., 1985; Berry et al., 1978; Jyothi et al., 1989; Mehta and Murr, 1983, 1982, Natarajan, 1988, 632 

1985, Natarajan and Iwasaki, 1983, 1986; Yelloji Rao and Natarajan, 1989) that the presence of bacteria such as 633 

Thiobacillus ferroxidans in a polymetallic sulphide mixture can accelerate galvanic interactions signifcantly. Whilst 634 

the role of microbes is highly important in the longer-term, in-situ, natural oxidation of seafloor sulphide ore 635 

deposits, it has been suggested that abiotic oxidation rates of sulphide minerals are more relevant to the oxidation 636 

of sulphides during seafloor mining (Bilenker et al., 2016; McBeth et al., 2011). It is postulated that bacterial 637 

colonization of freshly ground mineral surfaces is unlikely under the rapid time spans of mining (<30 minutes based 638 

on mining scenarios outlined by Nautilus Minerals Inc. However biotic oxidation could be of significant concern 639 

once fine sulphide material has settled after initial extraction and dewatering. Leaching of metals has the potential 640 

to continue after material has settled, not only abiotically but also when bacteria colonise the high surface area of 641 

sulphide material that has been exposed due to mining.  642 



 

 

7 Conclusions and future directions 643 

 644 
Experiments presented here at 1 atm and 12°C with SMS ore samples from TAG, Mid Atlantic Ridge show a 645 

dissolved concentration of metals (primarily Cu and Pb) at the parts per billion range that is not balanced by 646 

oxidation and precipitation over time. Quantifying the extent to which factor such as galvanic coupling, and 647 

mineralogy (and any associated absorption) or even biotic processes contribute to dissolution rates is not possible 648 

within the design of this study, but will need to be assessed in future studies. Nonetheless, the results of this study 649 

clearly demonstrate that the complexity surrounding the leaching of SMS ore needs to be considered and 650 

accounted for in environmental impact predictions. A combination of this study with analysis of the precipitated 651 

oxides would be a first step in advancing our understanding. It is also worth noting the higher pressure involved on 652 

the seabed. 653 

 654 

The evidence presented here clearly demonstrates that bulk chemistry alone cannot dictate the concentration of 655 

metals leached into seawater. Instead, a combination of mineralogy, absorption processes and/or galvanic effects 656 

must be considered as the primary driving forces behind the type and concentration of metals released and 657 

removed into the water column during SMS mining. As a result, it is imperative that extensive tests with the full 658 

range of ore mineralogy from future prospect sites are undertaken prior to activation of any extraction activities. 659 

Results where only one type of ore are utilised in experiments are applicable to only a particular area of a deposit 660 

and are not ubiquitous. Furthermore, the study highlights that the presence of Fe oxides/oxy-hydroxides within the 661 

deposit prior to mining (likely in the case of an inactive SMS deposit) could be advantageous in reducing the 662 

environmental toxicity associated with mining. The full contribution of galvanic coupling on the leaching of SMS ore 663 

remains unclear and observation of dissolution and oxidation in situ using atomic force microscopy (AFM) 664 

experiments could help to advance our understanding of galvanic couples between specific mineral combinations. 665 

 666 

In these experimental simulations, dissolved concentrations exceed the 99% protection, ANZECC toxicity 667 

guidelines by 620 times, and would imply the formation of localised toxicity in a stagnant water column. In reality 668 

this concentration will most likely be rapidly diluted by the entrainment of fresh seawater as a result of plume 669 

mixing (during the mining process) and/or deep ocean currents (site specific). Nevertheless, the distance at which 670 

dilution is achieved to meet guidelines is unlikely to be sufficient, indicating either a potential need for ship-board 671 

dilution prior to the return of waste water or a refinement of the mining process. Dilutions required to meet toxicity 672 

guidelines (for Cu and Pb) when mining a deposit like TAG, are less than half of those required for a deposit like 673 



 

 

Solwara 1 and imply that a deposit such as TAG could pose less of a risk to mine (in terms of leaching and toxicity) 674 

than Solwara 1. However, it should be noted that concentrations will be much higher compared to these 675 

experiments when scaled to more realistic rock-fluid ratios and a finer grain size (< 8 m) as proposed for seafloor 676 

mining scenarios.  677 

 678 

SMS deposits that contain higher concentrations of Cu and Pb than TAG, as well as other heavy metals in higher 679 

abundance (e.g. mafic-hosted and felsic-hosted (young, back-arc basin) settings (Herzig and Hannington, 1995)) 680 

signify an elevated risk of leaching when considering their environmental impact during the mining process 681 

(smaller grain size and higher rock-fluid ratio). This study highlights the importance of further research to predict 682 

and mitigate the effects of imminent SMS mining. 683 

 684 
In order for deep-sea mining to take place in the future, the environmental impact of such an undertaking needs to 685 

be fully understood and demonstrated. Experiments highlighted here and future planned experiments can help 686 

refine the mining processes and minimise detrimental impacts by providing recommendation of grain size fractions 687 

and rock-fluid ratios that can be adopted to reduce any risk of leaching and toxicity. Furthermore, certain types of 688 

deposit or mineralogies can be identified as presenting more or less of a risk. This can ensure minimal leaching 689 

of heavy metals and a reduction of environmental impact.  690 
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10 Figure Captions 832 

Figure 1 A galvanic cell occurs when two sulphide minerals with different rest potentials are coupled together in a 833 

solution that acts as an electrolyte (seawater in this case). The mineral with the higher rest potential behaves as a 834 

cathode (e.g. pyrite) and is galvanically protected with the reduction reaction occurring on its surface. The mineral 835 

with the lower rest potential (e.g. chalcopyrite) behaves as an anode and is preferentially dissolved with oxidative 836 

dissolution occurring on its surface. There are a number of potential reduction reactions that occur on the surface 837 

of the cathode depending on the ions available; shown above are the formation of water as well as hydroxides that 838 

can then ultimately form Fe hydroxides/oxy-hydroxides if ferrous Fe is available. Figure adapted from Murr (2006) 839 

and Fallon et al. (2017). Rest potentials of minerals at pH 4 are taken from Majima (1969) and references therein; 840 

quoted where available are rest potentials of minerals at pH 7 in distilled water, taken from Cheng and Iwasaki 841 

(1992). 842 

Figure 2 The location of TAG samples used in this study. TAG-B is located in the TAG-3 area and TAG H and J in 843 

the TAG-4 area. Detailed bathymetric data is overlaid on the map and the inset shows the location of the TAG 844 

hydrothermal field within the context of the Atlantic Ocean. This figure is reproduced from Humphris et al. (1995). 845 

Figure 3 Back-scattered electron (BSE) and reflected light microscopy photographs (PP, plane polarised; XP, 846 

cross polarised) of samples. TAG-B is a heavily oxidised, brecciated sample containing a high abundance of 847 

quartz, largely coated in silica and oxidation products including Fe oxides and Fe oxy-hydroxides (limonite). 848 

Included in this are grains of pyrite and chalcopyrite, with rare sphalerite. TAG-H is dominantly pyrite and 849 

marcasite with sphalerite veinlets and inclusions. TAG-J is similar with major pyrite and marcasite (less marcasite 850 

than TAG-H), however contains major chalcopyrite and no sphalerite. py, pyrite; ccp, chalcopyrite; mc, marcasite; 851 

sph, sphalerite; qtz, quartz 852 

Figure 4 Reflected light microscope (plane polarised) images of cleaned powders (2.5 - 45 µm). Presence of 853 

inclusions shows their preservation from whole rock sample through the grinding and sieving process. Chalcopyrite 854 

inclusions are observed in pyrite grains of both TAG B (top) and TAG J (bottom). Contacts between pyrite-855 

chalcopyrite and sphalerite-chalcopyrite in TAG B and covellite-chalcopyrite in TAG-J are also observed. TAG-H 856 

has common sphalerite-pyrite contacts. Whilst inclusions have been identified in grains of the ore powders, no 857 

quantifiable number can be assigned. 858 



 

 

Figure 5a, b and c Cu, Fe and Pb leached over time with all samples. Concentrations have been corrected to 859 

remove initial starting concentrations of Fe, Cu and Pb in seawater and normalised to mass of ore, volume of 860 

seawater used and surface area of each respective sample and are presented in µmol/m2. Shown for reference 861 

are representative maximum solubility’s of Cu, Fe and Pb in seawater taken from experimental and calculation 862 

studies (Angel et al., 2015; Franklin et al., 2001; Liu and Millero, 2002). Only Fe exceeds its solubility limit, which is 863 

expected based on the pH of the system and is supported by observations of Fe oxide/oxy-hydroxide precipitation. 864 

Figure 6a, b and c Cu, Fe and Pb leached over time with all samples. Concentrations have been corrected to 865 

remove initial starting concentrations of Fe, Cu and Pb in seawater and have been normalised to mass of each 866 

respective sample and are presented in ppb. Shown for comparison is elutriate data produced by Nautilus Minerals 867 

for the EIS (Parry, 2008; Simpson et al., 2007). Pink stars are data from an experiment undertaken with 868 

’representative’ Fe-rich Solwara 1 ore at 6 °C, particle size of 3.35 mm and a fluid to rock ratio of 25g to 250 mL 869 

(100 g/L) of seawater (Parry, 2008). Cyan crosses are data from an experiment with a Cu-Zn-Pb rich ore at 22 °C, 870 

particle size of <0.25 mm and a fluid to rock ratio of 1.25 g to 125 mL (10 g/L) of seawater (Simpson et al., 2007). 871 

Solid lines represent absolute concentrations and dashed lines represent concentration (ppb) data scaled to 2 g/L 872 

(ore to seawater ratio) for comparison with experiments undertaken in this study. No corrections can be made to 873 

scale EIS concentrations for temperature and grain size in order for comparison with this study. 874 

Figure 7 The dissolved Cu, Fe and Pb shown in experiments from this study as a percentage of the bulk 875 

concentration. Shown for comparison is the dissolved Cu, Fe and Pb as a percentage of the bulk from elutriate 876 

data produced by Nautilus Minerals for the EIS. Hatched bars indicate concentrations that have been corrected to 877 

2 g/L rock to fluid ratio, in line with this study. a) Initial loss of bulk as a %, at the 10-minute sampling interval. b) 878 

Dissolved concentrations as a % of the bulk, taken as an average after the 30-minute sampling interval.  879 

 880 

  881 



 

 

Table 1 Sample list with quoted surface area from BET measurements of ground, sieved and cleaned sulphide ore powders (<45m). Semi 882 

quantitative data (Wt %) are presented based on powder x-ray diffraction of ground, sieved and cleaned sulphide ore powders (<45m), 883 

dashes indicate either no observation or that the concentration was below the detection limit. Also presented are observations of inclusions 884 

based upon reflected light microscopy and SEM, EDX. Abbreviations used here are Py (pyrite), Mc (marcasite), Ccp (chalcopyrite), Cv 885 

(covellite), Sp (sphalerite), Anh (anhydrite), Ox (Fe oxides/oxy-hydroxides) and qtz (quartz). Bulk Fe, Cu and Pb concentration determined 886 

by aqua regia digestion with ICP-OES. Detailed method of acid digestion included in Supplementary Material D. 887 

Location Sample Surface Area  Mineral Abundances (wt %) Inclusions Bulk Fe  SD Bulk Cu  SD Bulk Pb SD 

(m2/g) Py  Mc  Ccp  Cv  Sp  Anh Ox  Qtz  wt%  ppm  ppm  

TAG-3 TAG-B 1.843 24.4 -- 6.2 -- -- -- 5.5 63.9 ccp in py, py in ccp 25.8 1.0 43035 5 182.73 6.84 
TAG-4 TAG-H 0.552 37.4 42.0 0.9 -- 1.2 0.8 -- 17.7  sp in py, mc 44.4 3.8 1130 86 107.97 9.12 
TAG-4 TAG-J 0.607 83.8 5.9 5.6 1.4 0.6 -- -- 2.6  sp, ccp in py 45.3 5.3 36592 4073 164.05 19.20 
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 900 
 901 



 

 

Table 2 Average concentration of Fe, Cu and Pb within pyrite, marcasite and sphalerite. Concentrations determined by laser ablation inductively 902 

coupled mass spectrometry (LA-ICP-MS). N refers to number of analyses. For detailed LA-ICP-MS methodology, please refer to Supplementary 903 

Material B.  904 

Sample Phase N Fe Error Cu Error Pb Error 
 wt% ppm 

TAG-B Pyrite 4 56.90 2.41 461.20 49.83 11.30 0.68 
TAG-H  Pyrite 8 54.21 2.07 33.15 3.67 73.34 4.35 
TAG-H Marcasite 8 55.62 1.87 70.75 4.79 113.59 10.58 
TAG-H Sphalerite 3 0.79 0.02 1720.70 28.35 212.00 6.01 
TAG-J Pyrite 6 57.34 2.64 715.30 43.48 217.30 15.90 
TAG-J Marcasite 3 57.31 1.59 77.20 5.75 65.70 5.29 

 905 
 906 
 907 
Table 3 Run parameters for experiments conducted in this study. Temperature, oxygen concentration and conductivity are averages of all 908 

measurements taken over the course of the run. Dissolved oxygen concentrations were held constant across the duration of experiments. The 909 

error reported is the standard deviation between those values. 910 

Run T  Sample Size  Initial Mass Mass lost on probes Mass during run 
Average Dissolved 
Oxygen Concentration  

Initial pH Final pH Conductivity  

 C  m g g g mg L-1   mS cm-1 

16 11.8 +/- 0.6 TAG-B 2.5 - 45 1.0023 0.0382 0.9641 9.4 +/- 0.04 8.05 7.13 37.9 +/- 0.2 
18 13.0 +/- 1.4 TAG-H 2.5 - 45 0.5939 0.0378 0.5561 9.8 +/- 0.70 8.91 7.79 36.5 +/- 0.2 
19 11.5 +/- 1.0 TAG-J 2.5 - 45 0.9106 0.0682 0.8424 8.96 +/- 0.90 8.4 7.56 38.6 +/- 0.6 
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