32 research outputs found

    Elasticity in ecosystem services: Exploring the variable relationship between ecosystems and human well-being

    Get PDF
    Although ecosystem services are increasingly recognized as benefits people obtain from nature, we still have a poor understanding of how they actually enhance multidimensional human well-being, and how well-being is affected by ecosystem change. We develop a concept of “ecosystem service elasticity” (ES elasticity) that describes the sensitivity of human well-being to changes in ecosystems. ES Elasticity is a result of complex social and ecological dynamics and is context dependent, individually variable, and likely to demonstrate nonlinear dynamics such as thresholds and hysteresis. We present a conceptual framework that unpacks the chain of causality from ecosystem stocks through flows, goods, value, and shares to contribute to the well-being of different people. This framework builds on previous conceptualizations, but places multidimensional well-being of different people as the final element. This ultimately disaggregated approach emphasizes how different people access benefits and how benefits match their needs or aspirations. Applying this framework to case studies of individual coastal ecosystem services in East Africa illustrates a wide range of social and ecological factors that can affect ES elasticity. For example, food web and habitat dynamics affect the sensitivity of different fisheries ecosystem services to ecological change. Meanwhile high cultural significance, or lack of alternatives enhance ES elasticity, while social mechanisms that prevent access can reduce elasticity. Mapping out how chains are interlinked illustrates how different types of value and the well-being of different people are linked to each other and to common ecological stocks. We suggest that examining chains for individual ecosystem services can suggest potential interventions aimed at poverty alleviation and sustainable ecosystems while mapping out of interlinkages between chains can help to identify possible ecosystem service trade-offs and winners and losers. We discuss conceptual and practical challenges of applying such a framework and conclude on its utility as a heuristic for structuring interdisciplinary analysis of ecosystem services and human wellbeing.This paper results from the project Sustainable Poverty Alleviation from Coastal Ecosystem Services (SPACES) project number NE-K010484-1, funded by the Ecosystem Services for Poverty Alleviation (ESPA) programme. The ESPA programme is funded by the Department for International Development (DFID), the Economic and Social Research Council (ESRC), and the Natural Environment Research Council (NERC).

    Macroalgae exhibit diverse responses to human disturbances on coral reefs

    Get PDF
    Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats

    Loss of coral reef growth capacity to track future increases in sea level

    Get PDF
    Water-depths above coral reefs is predicted to increase due to global sea-level rise (SLR). As ecological degradation inhibits the vertical accretion of coral reefs, it is likely that coastal wave exposure will increase but there currently exists a lack of data in projections concerning local rates of reef growth and local SLR. In this study we have aggregated ecological data of more than 200 tropical western Atlantic and Indian Ocean reefs and calculated their vertical growth which we have then compared with recent and projected rates of SLR across different Representative Concentration Pathway (RCP) scenarios. While many reefs currently show vertical growth that would be sufficient to keep-up with recent historic SLR, future projections under scenario RCP4.5 reveal that without substantial ecological recovery many reefs will not have the capacity to track SLR. Under RCP8.5, we predict that mean water depth will increase by over half a metre by 2100 across the majority of reefs. We found that coral cover strongly predicted whether a reef could track SLR, but that the majority of reefs had coral cover significantly lower than that required to prevent reef submergence. To limit reef submergence, and thus the impacts of waves and storms on adjacent coasts, climate mitigation and local impacts that reduce coral cover (e.g., local pollution and physical damage through development land reclamation) will be necessary

    Relationships between structural complexity, coral traits, and reef fish assemblages

    Get PDF
    With the ongoing loss of coral cover and theassociated flattening of reef architecture, understanding thelinks between coral habitat and reef fishes is of criticalimportance. Here, we investigate whether considering coraltraits and functional diversity provides new insights intothe relationship between structural complexity and reef fishcommunities, and whether coral traits and communitycomposition can predict structural complexity. Across 157sites in Seychelles, Maldives, the Chagos Archipelago, andAustralia’s Great Barrier Reef, we find that structuralcomplexity and reef zone are the strongest and most consistentpredictors of reef fish abundance, biomass, speciesrichness, and trophic structure. However, coral traits,diversity, and life histories provided additional predictivepower for models of reef fish assemblages, and were keydrivers of structural complexity. Our findings highlight thatreef complexity relies on living corals—with differenttraits and life histories—continuing to build carbonateskeletons, and that these nuanced relationships betweencoral assemblages and habitat complexity can affect thestructure of reef fish assemblages. Seascape-level estimatesof structural complexity are rapid and cost effective withimportant implications for the structure and function of fishassemblages, and should be incorporated into monitoringprograms
    corecore