126 research outputs found

    Increased plasma thioredoxin levels in patients with sepsis: positive association with macrophage migration inhibitory factor.

    Get PDF
    PURPOSE: To establish the relationship between plasma levels of thioredoxin (Trx) and macrophage migration inhibitory factor (MIF) in systemic inflammatory stress syndrome (SIRS)/sepsis. METHODS: Enzyme-linked immunosorbent assay measurements of Trx, MIF, IL-6, -8, and -10 and enzyme-linked fluorescent assay determination of procalcitonin (PCT) in plasma from patients with SIRS/sepsis, neutropenic sepsis, healthy volunteers and pre-oesophagectomy patients. RESULTS: Thioredoxin was significantly higher in SIRS/sepsis patients [101.3 ng ml(−1), interquartile range (IQR) 68.7–155.6, n = 32] compared with that in healthy controls (49.5 ng ml(−1), IQR 31.4–71.1, P < 0.001, n = 17) or pre-oesophagectomy patients (40.5 ng ml(−1), IQR 36.9–63.2, P < 0.01, n = 7), but was not raised in neutropenics (n = 5). MIF levels were also significantly higher in SIRS/sepsis patients (12.1 ng ml(−1), IQR 9.5–15.5, n = 35), but not in the neutropenic group, when compared with healthy controls (9.3 ng ml(−1), IQR 7.3–10.7, P < 0.01, n = 20). Trx levels correlated, positively, with MIF levels and APACHE II scores. Plasma levels of IL-6, -8 and -10 and PCT increased significantly in patients with SIRS/sepsis (P < 0.001) and with neutropenic sepsis, but did not correlate with Trx or MIF levels. CONCLUSION: Plasma levels of Trx, MIF, IL-6, -8, -10 and PCT were raised in patients with SIRS/sepsis. Comparisons between mediators suggest a unique correlation of Trx with MIF. Moreover, Trx and MIF differed from cytokines and PCT in that levels were significantly lower in patients with neutropenia compared with the main SIRS/sepsis group. By contrast, IL-8 and PCT levels were significantly greater in the neutropenic patient group. The link between MIF and Trx highlighted in this study has implications for future investigations into the pathogenesis of SIRS/sepsis

    A novel radioresistant mechanism of galectin-1 mediated by H-Ras-dependent pathways in cervical cancer cells

    Get PDF
    Galectin-1 is a lectin recognized by galactoside-containing glycoproteins, and is involved in cancer progression and metastasis. The role of galectin-1 in radiosensitivity has not previously been investigated. Therefore, this study tests whether galectin-1 is involved in the radiosensitivity mediated by the H-Ras signaling pathway using cervical carcinoma cell lines. A knockdown of galectin-1 expression in HeLa cells decreased clonogenic survival following irradiation. The clonogenic survival increased in both HeLa and C33A cells with galectin-1 overexpression. The overexpression or knockdown of galectin-1 did not alter radiosensitivity, whereas H-Ras was silenced in both cell lines. Whereas K-Ras was knocked down, galectin-1 restored the radiosensitivity in HeLa cells and C33A cells. The knockdown of galectin-1 increased the high-dose radiation-induced cell death of HeLa cells transfected by constitutively active H-Ras. The knockdown of galectin-1 inhibited the radiation-induced phosphorylation of Raf-1 and ERK in HeLa cells. Overexpression of galectin-1 enhanced the phosphorylation of Raf-1 and ERK in C33A cells following irradiation. Galectin-1 decreased the DNA damage detected using comet assay and γ-H2AX in both cells following irradiation. These findings suggest that galectin-1 mediates radioresistance through the H-Ras-dependent pathway involved in DNA damage repair

    Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection

    Get PDF
    Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of the probability of occurrence of a new mutation's effect has been a fundamental premise in genetics. However, highly mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional importance of nucleotide sites

    Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection

    Get PDF
    Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of the probability of occurrence of a new mutation's effect has been a fundamental premise in genetics. However, highly mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional importance of nucleotide sites

    A framework for evolutionary systems biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects.</p> <p>Results</p> <p>Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions <it>in silico</it>. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism.</p> <p>Conclusion</p> <p>EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.</p

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Get PDF
    corecore