533 research outputs found

    Localized moving breathers in a 2-D hexagonal lattice

    Full text link
    We show for the first time that highly localized in-plane breathers can propagate in specific directions with minimal lateral spreading in a model 2-D hexagonal non-linear lattice. The lattice is subject to an on-site potential in addition to longitudinal nonlinear inter-particle interactions. This study investigates the prediction that stable breather-like solitons could be formed as a result of energetic scattering events in a given layered crystal and would propagate in atomic-chain directions in certain atomic planes. This prediction arose from a long-term study of previously unexplained dark lines in natural crystals of muscovite mica.Comment: 6 pages, 2 Figs. Submitted to PR

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation

    Full text link
    Rate theory of the radiation-induced precipitation in solids is modified with account of non-equilibrium fluctuations driven by the gas of lattice solitons (a.k.a. quodons) produced by irradiation. According to quantitative estimations, a steady-state density of the quodon gas under sufficiently intense irradiation can be as high as the density of phonon gas. The quodon gas may be a powerful driver of the chemical reaction rates under irradiation, the strength of which exponentially increases with irradiation flux and may be comparable with strength of the phonon gas that exponentially increases with temperature. The modified rate theory is applied to modelling of copper precipitation in FeCu binary alloys under electron irradiation. In contrast to the classical rate theory, which disagrees strongly with experimental data on all precipitation parameters, the modified rate theory describes quite well both the evolution of precipitates and the matrix concentration of copper measured by different methodsComment: V. Dubinko, R. Shapovalov, Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation. (Springer International Publishing, Switzerland, 2014

    Key lessons from the COVID-19 public health response in Australia

    Get PDF
    Australia avoided the worst effects of the COVID-19 pandemic, but still experienced many negative impacts. Reflecting on lessons from Australia's public health response, an Australian expert panel composed of relevant discipline experts identified the following key lessons: 1) movement restrictions were effective, but their implementation requires careful consideration of adverse impacts, 2) disease modelling was valuable, but its limitations should be acknowledged, 3) the absence of timely national data requires re-assessment of national surveillance structures, 4) the utility of advanced pathogen genomics and novel vaccine technology was clearly demonstrated, 5) decision-making that is evidence informed and consultative is essential to maintain trust, 6) major system weaknesses in the residential aged-care sector require fixing, 7) adequate infection prevention and control frameworks are critically important, 8) the interests and needs of young people should not be compromised, 9) epidemics should be recognised as a ‘standing threat’, 10) regional and global solidarity is important. It should be acknowledged that we were unable to capture all relevant nuances and context specific differences. However, the intent of this review of Australia's public health response is to critically reflect on key lessons learnt and to encourage constructive national discussion in countries across the Western Pacific Region

    Physical Constraints from Near-infrared Fast Photometry of the Black Hole Transient GX 339–4

    Get PDF
    We present results from the first multi-epoch X-ray/IR fast-photometry campaign on the black hole transient GX 339–4, during its 2015 outburst decay. We studied the evolution of the power spectral densities finding strong differences between the two bands. The X-ray power spectral density follows standard patterns of evolution, plausibly reflecting changes in the accretion flow. The IR power spectral density instead evolves very slowly, with a high-frequency break consistent with remaining constant at 0.63 ± 0.03 Hz throughout the campaign. We discuss this result in the context of the currently available models for the IR emission in black hole transients. While all models will need to be tested quantitatively against this unexpected constraint, we show that an IR-emitting relativistic jet that filters out the short-timescale fluctuations injected from the accretion inflow appears as the most plausible scenario

    The Three Rs: The Way Forward

    Get PDF
    This is the report of the eleventh of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM), which was established in 1991 by the European Commission. ECVAM\u27s main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine or replace the use of laboratory animals. One of the first priorities set by ECVAM was the implementation of procedures which would enable it to become well-informed about the state-of-the-art of non-animal test development and validation. and the potential for the possible incorporation of replacement alternative tests into regulatory procedures. It was decided that this would be best achieved by the organisation of ECVAM workshops on specific topics, at which small groups of invited experts would review the current status of various types of in vitro tests and their potential uses, and make recommendations about the best ways forward

    A novel genetic variant of Streptococcus pneumoniae serotype 11A discovered in Fiji.

    Get PDF
    OBJECTIVES: As part of annual cross-sectional Streptococcus pneumoniae carriage surveys in Fiji (2012-2015), we detected pneumococci in over 100 nasopharyngeal swabs that serotyped as '11F-like' by microarray. We examined the genetic basis of this divergence in the 11F-like capsular polysaccharide (cps) locus compared to the reference 11F cps sequence. The impact of this diversity on capsule phenotype, and serotype results using genetic and serologic methods were determined. METHODS: Genomic DNA from representative 11F-like S. pneumoniae isolates obtained from the nasopharynx of Fijian children was extracted and subject to whole genome sequencing. Genetic and phylogenetic analyses were used to identify genetic changes in the cps locus. Capsular phenotypes were evaluated using the Quellung reaction and latex agglutination. RESULTS: Compared to published 11F sequences, the wcwC and wcrL genes of the 11F-like cps locus are phylogenetically divergent, and the gct gene contains a single nucleotide insertion within a homopolymeric region. These changes within the DNA sequence of the 11F-like cps locus have modified the antigenic properties of the capsule, such that 11F-like isolates serotype as 11A by Quellung reaction and latex agglutination. CONCLUSIONS: This study demonstrates the ability of molecular serotyping by microarray to identify genetic variants of S. pneumoniae and highlights the potential for discrepant results between phenotypic and genotypic serotyping methods. We propose that 11F-like isolates are not a new serotype but rather are a novel genetic variant of serotype 11A. These findings have implications for invasive pneumococcal disease surveillance as well as studies investigating vaccine impact

    Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070

    Get PDF
    We present multiwavelength fast timing observations of the black hole X-ray binary MAXI J1820+070 (ASASSN-18ey), taken with the Karl G. Jansky Very Large Array (VLA), Atacama Large Millimeter/Sub-Millimeter Array (ALMA), Very Large Telescope (VLT), New Technology Telescope (NTT), Neutron Star Interior Composition Explorer (NICER), and XMM–Newton. Our data set simultaneously samples 10 different electromagnetic bands (radio – X-ray) over a 7-h period during the hard state of the 2018–2019 outburst. The emission we observe is highly variable, displaying multiple rapid flaring episodes. To characterize the variability properties in our data, we implemented a combination of cross-correlation and Fourier analyses. We find that the emission is highly correlated between different bands, measuring time-lags ranging from hundreds of milliseconds between the X-ray/optical bands to minutes between the radio/sub-mm bands. Our Fourier analysis also revealed, for the first time in a black hole X-ray binary, an evolving power spectral shape with electromagnetic frequency. Through modelling these variability properties, we find that MAXI J1820+070 launches a highly relativistic (Γ=6.81−1.15+1.06\Gamma =6.81^{+1.06}_{-1.15}) and confined (ϕ=0.45−0.11+0.13\phi =0.45^{+0.13}_{-0.11} deg) jet, which is carrying a significant amount of power away from the system (equivalent to ∼0.6 L1−100keV\sim 0.6 \, L_{1-100{\rm keV}}). We additionally place constraints on the jet composition and magnetic field strength in the innermost jet base region. Overall, this work demonstrates that time-domain analysis is a powerful diagnostic tool for probing jet physics, where we can accurately measure jet properties with time-domain measurements alone
    • …
    corecore