433 research outputs found
Surface structure and solidification morphology of aluminum nanoclusters
Classical molecular dynamics simulation with embedded atom method potential
had been performed to investigate the surface structure and solidification
morphology of aluminum nanoclusters Aln (n = 256, 604, 1220 and 2048). It is
found that Al cluster surfaces are comprised of (111) and (001) crystal planes.
(110) crystal plane is not found on Al cluster surfaces in our simulation. On
the surfaces of smaller Al clusters (n = 256 and 604), (111) crystal planes are
dominant. On larger Al clusters (n = 1220 and 2048), (111) planes are still
dominant but (001) planes can not be neglected. Atomic density on cluster
(111)/(001) surface is smaller/larger than the corresponding value on bulk
surface. Computational analysis on total surface area and surface energies
indicates that the total surface energy of an ideal Al nanocluster has the
minimum value when (001) planes occupy 25% of the total surface area. We
predict that a melted Al cluster will be a truncated octahedron after
equilibrium solidification.Comment: 22 pages, 6 figures, 34 reference
The controlled teleportation of an arbitrary two-atom entangled state in driven cavity QED
In this paper, we propose a scheme for the controlled teleportation of an
arbitrary two-atom entangled state
in driven cavity QED.
An arbitrary two-atom entangled state can be teleported perfectly with the help
of the cooperation of the third side by constructing a three-atom GHZ entangled
state as the controlled channel. This scheme does not involve apparent (or
direct) Bell-state measurement and is insensitive to the cavity decay and the
thermal field. The probability of the success in our scheme is 1.0.Comment: 10 page
Universality in the Screening Cloud of Dislocations Surrounding a Disclination
A detailed analytical and numerical analysis for the dislocation cloud
surrounding a disclination is presented. The analytical results show that the
combined system behaves as a single disclination with an effective fractional
charge which can be computed from the properties of the grain boundaries
forming the dislocation cloud. Expressions are also given when the crystal is
subjected to an external two-dimensional pressure. The analytical results are
generalized to a scaling form for the energy which up to core energies is given
by the Young modulus of the crystal times a universal function. The accuracy of
the universality hypothesis is numerically checked to high accuracy. The
numerical approach, based on a generalization from previous work by S. Seung
and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own
and allows to compute the energy for an {\em arbitrary} distribution of
defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy}
with very minor additional computational effort. Some implications for recent
experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file
A proteomic approach for investigating the pleiotropic effects of statins in the atherosclerosis risk in communities (ARIC) study
Background: Statins are prescribed to reduce LDL-c and risk of CVD. Statins have pleiotropic effects, affecting pathophysiological functions beyond LDL-c reduction. We compared the proteome of statin users and nonusers (controls). We hypothesized that statin use is associated with proteins unrelated to lipid metabolism. Methods: Among 10,902 participants attending ARIC visit 3 (1993–95), plasma concentrations of 4955 proteins were determined using SOMAlogic's DNA aptamer-based capture array. 379 participants initiated statins within the 2 years prior. Propensity scores (PS) were calculated based on visit 2 (1990–92) LDL-c levels and visit 3 demographic/clinical characteristics. 360 statin users were PS matched to controls. Log2-transformed and standardized protein levels were compared using t-tests, with false discovery rate (FDR) adjustment for multiple comparisons. Analyses were replicated in visit 2. Results: Covariates were balanced after PS matching, except for higher visit 3 LDL-c levels among controls (125.70 vs 147.65 mg/dL; p < 0.0001). Statin users had 11 enriched and 11 depleted protein levels after FDR adjustment (q < 0.05). Proteins related and unrelated to lipid metabolism differed between groups. Results were largely replicated in visit 2. Conclusion: Proteins unrelated to lipid metabolism differed by statin use. Pending external validation, exploring their biological functions could elucidate pleiotropic effects of statins. Significance: Statins are the primary pharmacotherapy for lowering low-density lipoprotein (LDL) cholesterol and preventing cardiovascular disease. Their primary mechanism of action is through inhibiting the protein 3hydroxy-3-methylglutaryl CoA reductase (HMGCR) in the mevalonate pathway of LDL cholesterol synthesis. However, statins have pleiotropic effects and may affect other biological processes directly or indirectly, with hypothesized negative and positive effects. The present study contributes to identifying these pathways by comparing the proteome of stain users and nonusers with propensity score matching. Our findings highlight potential biological mechanisms underlying statin pleiotropy, informing future efforts to identify statin users at risk of rare nonatherosclerotic outcomes and identify health benefits of statin use independent of LDL-C reduction
Quantum Dimensional Zeeman Effect in the Magneto-optical Absorption Spectrum for Quantum Dot - Impurity Center Systems
Magneto-optical properties of the quantum dot - impurity center (QD-IC)
systems synthesized in a transparent dielectric matrix are considered. For the
QD one-electron state description the parabolic model of the confinement
potential is used. Within the framework of zero-range potential model and the
effective mass approach, the light impurity absorption coefficient for the case
of transversal polarization with respect to the applied magnetic field
direction, with consideration of the QD size dispersion, has been analytically
calculated. It is shown that for the case of transversal polarization the light
impurity absorption spectrum is characterized by the quantum dimensional Zeeman
effect.Comment: 18 pages, 1 figure, PDF fil
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
- …