231 research outputs found
A random matrix decimation procedure relating to
Classical random matrix ensembles with orthogonal symmetry have the property
that the joint distribution of every second eigenvalue is equal to that of a
classical random matrix ensemble with symplectic symmetry. These results are
shown to be the case of a family of inter-relations between eigenvalue
probability density functions for generalizations of the classical random
matrix ensembles referred to as -ensembles. The inter-relations give
that the joint distribution of every -st eigenvalue in certain
-ensembles with is equal to that of another
-ensemble with . The proof requires generalizing a
conditional probability density function due to Dixon and Anderson.Comment: 19 pages, 1 figur
Fermion Masses and Mixing in Intersecting Branes Scenarios
We study the structure of Yukawa couplings in intersecting D6-branes wrapping
a factorizable 6-torus compact space T^6. Models with MSSM-like spectrum are
analyzed and found to fail in predicting the quark mass spectrum because of the
way in which the family structure for the left-handed, right-handed quarks and,
eventually, the Higgses is `factorized' among the different tori. In order to
circumvent this, we present a model with three supersymmetric Higgs doublets
which satisfies the anomaly cancellation condition in a more natural way than
the previous models, where quarks were not treated universally regarding their
branes assignments, or some particular branes were singled out being invariant
under orientifold projection. In our model, the family structures for the left,
right quarks, left leptons and the Higgses arise from one of the tori and can
naturally lead to universal strength Yukawa couplings which accommodate the
quark mass hierarchy and the mixing angles.Comment: 21 pages, latex, matches the Phys. Rev. D versio
Absolute Proper Motions to B~22.5: IV. Faint, Low Velocity White Dwarfs and the White Dwarf Population Density Law
The reduced proper motion diagram (RPMD) for a complete sample of faint stars
with high accuracy proper motions in the North Galactic Pole field SA57 is
investigated. Eight stars with very large reduced proper motions are identified
as faint white dwarf candidates. We discriminate these white dwarf candidates
from the several times more numerous QSOs based on proper motion and
variability.
We discuss the implausibility that these stars could be any kind of survey
contaminant. If {\it bona fide} white dwarfs, the eight candidates found here
represent a portion of the white dwarf population hitherto uninvestigated by
previous surveys by virtue of the faint magnitudes and low proper motions. The
newly discovered stars suggest a disk white dwarf scaleheight larger than the
values of 250-350 pc typically assumed in assessments of the local white dwarf
density. Both a <V/V_{max}> and a more complex maximum likelihood analysis of
the spatial distribution of our likely thin disk white dwarfs yield
scaleheights of 400-600 pc while at the same time give a reasonable match to
the local white dwarf volume density found in other surveys.
Our results could have interesting implications for white dwarfs as potential
MACHO objects. We can place some direct constraints (albeit weak ones) on the
contribution of halo white dwarfs to the dark matter of the Galaxy. Moreover,
the elevated scale height that we measure for the thin disk could alter the
interpretation of microlensing results to the extent of making white dwarfs
untenable as the dominant MACHO contributor. (Abridged)Comment: 38 pages, 5 figures, to appear in April Ap
The Isl1/Ldb1 complex orchestrates heart-specific chromatin organization and transcriptional regulation
Cardiac stem/progenitor cells hold great potential for regenerative therapies however the mechanisms regulating their expansion and differentiation remain insufficiently defined. Here we show that the multi-adaptor protein Ldb1 is a central regulator of cardiac progenitor cell differentiation and second heart field (SHF) development. Mechanistically, we demonstrate that Ldb1 binds to the key regulator of SHF progenitors Isl1 and protects it from proteasomal degradation. Furthermore, the Isl1/Ldb1 complex promotes long-range promoter-enhancer interactions at the loci of the core cardiac transcription factors Mef2c and Hand2. Chromosome conformation capture followed by sequencing identified surprisingly specific, Ldb1-mediated interactions of the Isl1/Ldb1 responsive Mef2c anterior heart field enhancer with genes which play key roles in cardiac progenitor cell function and cardiovascular development. Importantly, the expression of these genes was downregulated upon Ldb1 depletion and Isl1/Ldb1 haplodeficiency. In conclusion, the Isl1/Ldb1 complex orchestrates a network for heart-specific transcriptional regulation and coordination in three-dimensional space during cardiogenesis
Chirality and Symmetry Breaking in a discrete internal Space
In previous papers the permutation group S_4 has been suggested as an
ordering scheme for elementary particles, and the appearance of this finite
symmetry group was taken as indication for the existence of a discrete inner
symmetry space underlying elementary particle interactions. Here it is pointed
out that a more suitable choice than the tetrahedral group S_4 is the
pyritohedral group A_4 x Z_2 because its vibrational spectrum exhibits exactly
the mass multiplet structure of the 3 fermion generations. Furthermore it is
noted that the same structure can also be obtained from a primordial symmetry
breaking S_4 --> A_4. Since A_4 is a chiral group, while S_4 is achiral, an
argument can be given why the chirality of the inner pyritohedral symmetry
leads to parity violation of the weak interactions.Comment: 42 pages, 3 table
Pure adaptive search in monte carlo optimization
Pure adaptive search constructs a sequence of points uniformly distributed within a corresponding sequence of nested regions of the feasible space. At any stage, the next point in the sequence is chosen uniformly distributed over the region of feasible space containing all points that are equal or superior in value to the previous points in the sequence. We show that for convex programs the number of iterations required to achieve a given accuracy of solution increases at most linearly in the dimension of the problem. This compares to exponential growth in iterations required for pure random search.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47920/1/10107_2005_Article_BF01582296.pd
Tabelas de esperança de vida e fertilidade de Myzus persicae sobre pimentão em laboratório e casa de vegetação
Estudos de tabelas de vida de insetos-praga em diferentes temperaturas auxiliam na compreensão da dinâmica populacional desses organismos. Objetivou-se calcular tabelas de esperança de vida e de fertilidade de Myzus persicae criado em pimentão Capsicum annuum, em diferentes condições térmicas. O estudo foi realizado em câmaras climatizadas, nas temperaturas de 15, 20, 25 e 30 ºC, UR de 70±10% e fotofase de 12 horas, e em casa de vegetação em temperaturas oscilantes, com média de 24,9 ºC e UR de 68,1%. A longevidade máxima de adultos de M. persicae foi maior a 15 ºC (45 dias) e diminuiu a 20 ºC (39 dias), 25 ºC (27 dias), 30 ºC (24 dias) e, em casa de vegetação a 24,9 ºC foi de 29,5 dias. A esperança de vida (ex) no primeiro dia de observação foi de 43,76; 35,39; 21,44; 17,67 e 17,03 dias, para as ninfas mantidas a 15, 20, 25, 30 e 24,9 ºC respectivamente, tendo a partir daà uma queda acentuada até o fim das observações. Os parâmetros de tabelas de vida e de fertilidade evidenciaram que a temperatura de 25 ºC proporcionou a melhor condição térmica para o crescimento populacional de M. persicae, com maior capacidade de aumentar em número (r m = 0,31) e menor tempo necessário para a população duplicar (TD=2,22 dias). Em casa de vegetação a oscilação térmica afetou o crescimento populacional, proporcionando menor valor de r m (0,28) e maior TD (2,47 dias), comparados àqueles mantidos à temperatura constante equivalente
- …