960 research outputs found

    Design of a 10 MeV Beamline at the Upgraded Injector Test Facility for e-Beam Irradiation

    Get PDF
    Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The space charge effects were investigated when the bunch charge is varied to be up to 1000 times and the results showed that they do not affect the beam quality significantly

    THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing

    Get PDF
    Ultrafast demagnetization of Co/Pt heterostructures induced by a femtosecond 800-nm laser pulse launches a spin current from Co to Pt and subsequent conversion of the spin current to a charge current in the Pt layer due to the inverse spin-Hall effect. At the same time, due to the spin-dependent photogalvanic effect, a circularly polarized femtosecond laser pulse also generates a photocurrent at the Co/Pt interface. Both ultrashort photocurrent pulses are effectively detected in a contactless way by measuring the THz radiation they emit. Here we aim to understand how the properties of the Co/Pt interface affect the photocurrents in the bilayers. By varying the interfacial roughness, crystal structure, and interfacial intermixing, as well as having an explicit focus on the cases when THz emissions from these two photocurrents reveal opposite trends, we identify which interface properties play a crucial role for the photocurrents. In particular, we show that by reducing the roughness, the THz emission due to the spin-dependent photogalvanic effect reduces to zero while the strength of the THz emission from the photocurrent associated with the inverse spin-Hall effect increases by a factor of 2. On the other hand, while intermixing strongly enhances the THz emission from the inverse spin-Hall effect by a factor of 4.2, THz emission related to the spin-dependent photogalvanic effect reveals the opposite trend. These findings indicate that microstructural properties of the Co-Pt interface play a decisive role in the generation of photocurrents

    The newly observed open-charm states in quark model

    Full text link
    Comparing the measured properties of the newly observed open-charm states D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent quark model, we find that: (1) the D(2\,^1S_0) assignment to D(2550) remains open for its too broad width determined by experiment; (2) the D(2600) and Ds1(2710)D_{s1}(2710) can be identified as the 2\,^3S_1-1\,^3D_1 mixtures; (3) if the D(2760) and D(2750) are indeed the same resonance, they would be the D(1\,^3D_3); otherwise, they could be assigned as the D(1\,^3D_3) and D2(1D)D^\prime_2(1D), respectively; (4) the DsJ(2860)D_{sJ}(2860) could be either the Ds1(2710)D_{s1}(2710)'s partner or the D_s(1\,^3D_3); and (5) both the Ds1(2P)D_{s1}(2P) and Ds1(2P)D^\prime_{s1}(2P) interpretations for the DsJ(3040)D_{sJ}(3040) seem likely. The E1E1 and M1M1 radiative decays of these sates are also studied. Further experimental efforts are needed to test the present quarkonium assignments for these new open-charm states.Comment: 26 pages,7 figures, journal versio

    methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles

    Get PDF
    DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation, cellular specification and cancer development. Here, we describe an R package, methylKit, that rapidly analyzes genome-wide cytosine epigenetic profiles from high-throughput methylation and hydroxymethylation sequencing experiments. methylKit includes functions for clustering, sample quality visualization, differential methylation analysis and annotation features, thus automating and simplifying many of the steps for discerning statistically significant bases or regions of DNA methylation. Finally, we demonstrate methylKit on breast cancer data, in which we find statistically significant regions of differential methylation and stratify tumor subtypes. methylKit is available at http://code.google.com/p/methylkit

    Curved Flats, Pluriharmonic Maps and Constant Curvature Immersions into Pseudo-Riemannian Space Forms

    Full text link
    We study two aspects of the loop group formulation for isometric immersions with flat normal bundle of space forms. The first aspect is to examine the loop group maps along different ranges of the loop parameter. This leads to various equivalences between global isometric immersion problems among different space forms and pseudo-Riemannian space forms. As a corollary, we obtain a non-immersibility theorem for spheres into certain pseudo-Riemannian spheres and hyperbolic spaces. The second aspect pursued is to clarify the relationship between the loop group formulation of isometric immersions of space forms and that of pluriharmonic maps into symmetric spaces. We show that the objects in the first class are, in the real analytic case, extended pluriharmonic maps into certain symmetric spaces which satisfy an extra reality condition along a totally real submanifold. We show how to construct such pluriharmonic maps for general symmetric spaces from curved flats, using a generalised DPW method.Comment: 21 Pages, reference adde

    Photo-production of Nucleon Resonances and Nucleon Spin Structure Function in the Resonance Region

    Get PDF
    The photo-production of nucleon resonances is calculated based on a chiral constituent quark model including both relativistic corrections H{rel} and two-body exchange currents, and it is shown that these effects play an important role. We also calculate the first moment of the nucleon spin structure function g1 (x,Q^2) in the resonance region, and obtain a sign-changing point around Q^2 ~ 0.27 {GeV}^2 for the proton.Comment: 23 pages, 5 figure

    Minimum mass of galaxies from BEC or scalar field dark matter

    Full text link
    Many problems of cold dark matter models such as the cusp problem and the missing satellite problem can be alleviated, if galactic halo dark matter particles are ultra-light scalar particles and in Bose-Einstein condensate (BEC), thanks to a characteristic length scale of the particles. We show that this finite length scale of the dark matter can also explain the recently observed common central mass of the Milky Way satellites (107M\sim 10^7 M_\odot) independent of their luminosity, if the mass of the dark matter particle is about 1022eV10^{-22} eV.Comment: 10 pages, 1 figure, accepted in JCA

    Study of K0(1430)K^*_0(1430) and a0(980)a_0(980) from BK0(1430)πB\to K^*_0(1430)\pi and Ba0(980)KB\to a_0(980)K Decays

    Full text link
    We use the decay modes BK0(1430)πB \to K^*_0(1430) \pi and Ba0(980)KB \to a_0(980) K to study the scalar mesons K0(1430)K^*_0(1430) and a0(980)a_0(980) within perturbative QCD framework. For BK0(1430)πB \to K^*_0(1430) \pi, we perform our calculation in two scenarios of the scalar meson spectrum. The results indicate that scenario II is more favored by experimental data than scenario I. The important contribution from annihilation diagrams can enhance the branching ratios about 50% in scenario I, and about 30% in scenario II. The predicted branching ratio of Ba0(980)KB \to a_0(980) K in scenario I is also less favored by the experiments. The direct CP asymmetries in BK0(1430)πB \to K^*_0(1430) \pi are small, which are consistent with the present experiments.Comment: More references are added. Published Versio

    Nucleonic resonance excitations with linearly polarized photon in γpωp\gamma p\to \omega p

    Full text link
    In this work, an improved quark model approach to the ω\omega meson photo-production with an effective Lagrangian is presented. The {\it t}-channel {\it natural}-parity exchange is taken into account through the Pomeron exchange, while the {\it unnatural}-parity exchange is described by the π0\pi^0 exchange. With a very limited number of parameters, the available experimental data in the low energy regime can be consistently accounted for. We find that the beam polarization observables show sensitivities to some {\it s}-channel individual resonances in the SU(6)O(3)SU(6)\otimes O(3) quark model symmetry limit. Especially, the two resonances P13(1720)P_{13}(1720) and F15(1680)F_{15}(1680), which belong to the representation [56,28,2,2,J][{\bf 56, ^2 8}, 2, 2, J], have dominant contributions over other excited states. Concerning the essential motivation of searching for "missing resonances" in meson photo-production, this approach provides a feasible framework, on which systematic investigations can be done.Comment: 16 pages, Revtex, 9 eps figures, to appear in PR

    Study of the f2(1270)f_2(1270), f2(1525)f_2'(1525), f0(1370)f_0(1370) and f0(1710)f_0(1710) in the J/ψJ/\psi radiative decays

    Get PDF
    In this paper we present an approach to study the radiative decay modes of the J/ψJ/\psi into a photon and one of the tensor mesons f2(1270)f_2(1270), f2(1525)f'_2(1525), as well as the scalar ones f0(1370)f_0(1370) and f0(1710)f_0(1710). Especially we compare predictions that emerge from a scheme where the states appear dynamically in the solution of vector meson--vector meson scattering amplitudes to those from a (admittedly naive) quark model. We provide evidence that it might be possible to distinguish amongst the two scenarios, once improved data are available.Comment: The large Nc argument improved; version published in EPJA
    corecore