84 research outputs found

    An extraordinary new species of melanophryniscus (anura, bufonidae) from Southeastern Brazil

    Get PDF
    We describe a new species of bufonid from a lowland, sandy soil, restinga habitat in the state of Espírito Santo, southeastern Brazil. Based on the shared occurrence of putative morphological synapomorphies of Melanophryniscus and the results of a phylogenetic analysis of DNA sequences of a broad sample of bufonids, and other anurans, we assign the new species to Melanophryniscus. The new species possesses several peculiar character states that distinguish it from all other Melanophryniscus including, but not limited to: fingers II, III, and V much reduced; nuptial pad with few enlarged, brown-colored spines on medial margin of finger II; seven presacral vertebrae, the last fused with the sacrum; and ventral humeral crest prominent, forming a spinelike projection. © Copyright © American Museum of Natural History 2012.Fil: Peloso, Pedro L.V.. American Museum of Natural History; Estados UnidosFil: Faivovich, Juliån. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. American Museum of Natural History; Estados UnidosFil: Grant, Taran. American Museum of Natural History; Estados UnidosFil: Gasparini, João Luiz. Universidade Federal do Espírito Santo; BrasilFil: Haddad, Célio F.B.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    THE AMPHIBIAN TREE OF LIFE

    Get PDF
    The evidentiary basis of the currently accepted classification of living amphibians is discussed and shown not to warrant the degree of authority conferred on it by use and tradition. A new taxonomy of living amphibians is proposed to correct the deficiencies of the old one. This new taxonomy is based on the largest phylogenetic analysis of living Amphibia so far accomplished. We combined the comparative anatomical character evidence of Haas (2003) with DNA sequences from the mitochondrial transcription unit H1 (12S and 16S ribosomal RNA and tRNAValine genes, þ 2,400 bp of mitochondrial sequences) and the nuclear genes histone H3, rhodopsin, tyrosinase, and seven in absentia, and the large ribosomal subunit 28S (þ 2,300 bp of nuclear sequences; ca. 1.8 million base pairs; x¯ 5 3.7 kb/terminal). The dataset includes 532 terminals sampled from 522 species representative of the global diversity of amphibians as well as seven of the closest living relatives of amphibians for outgroup comparisons. The primary purpose of our taxon sampling strategy was to provide strong tests of the monophyly of all ‘‘family-group’’ taxa. All currently recognized nominal families and subfamilies were sampled, with the exception of Protohynobiinae (Hynobiidae). Many of the currently recognized genera were also sampled. Although we discuss the monophyly of genera, and provide remedies for nonmonophyly where possible, we also make recommendations for future research. A parsimony analysis was performed under Direct Optimization, which simultaneously optimizes nucleotide homology (alignment) and tree costs, using the same set of assumptions throughout the analysis. Multiple search algorithms were run in the program POY over a period of seven months of computing time on the AMNH Parallel Computing Cluster. Results demonstrate that the following major taxonomic groups, as currently recognized, are nonmonophyletic: Ichthyophiidae (paraphyletic with respect to Uraeotyphlidae), Caeciliidae (paraphyletic with respect to Typhlonectidae and Scolecomorphidae), Salamandroidea (paraphyletic with respect to Sirenidae), Leiopelmatanura (paraphyletic with respect to Ascaphidae), Discoglossanura (paraphyletic with respect to Bombinatoridae), Mesobatrachia (paraphyletic with respect to Neobatrachia), Pipanura (paraphyletic with respect to Bombinatoridae and Discoglossidae/Alytidae), Hyloidea (in the sense of containing Heleophrynidae; paraphyletic with respect to Ranoidea), Leptodactylidae (polyphyletic, with Batrachophrynidae forming the sister taxon of Myobatrachidae 1 Limnodynastidae, and broadly paraphyletic with respect to Hemiphractinae, Rhinodermatidae, Hylidae, Allophrynidae, Centrolenidae, Brachycephalidae, Dendrobatidae, and Bufonidae), Microhylidae (polyphyletic, with Brevicipitinae being the sister taxon of Hemisotidae), Microhylinae (poly/paraphyletic with respect to the remaining non-brevicipitine microhylids), Hyperoliidae (para/polyphyletic, with Leptopelinae forming the sister taxon of Arthroleptidae 1 Astylosternidae), Astylosternidae (paraphyletic with respect to Arthroleptinae), Ranidae (paraphyletic with respect to Rhacophoridae and Mantellidae). In addition, many subsidiary taxa are demonstrated to be nonmonophyletic, such as (1) Eleutherodactylus with respect to Brachycephalus; (2) Rana (sensu Dubois, 1992), which is polyphyletic, with various elements falling far from each other on the tree; and (3) Bufo, with respect to several nominal bufonid genera. A new taxonomy of living amphibians is proposed, and the evidence for this is presented to promote further investigation and data acquisition bearing on the evolutionary history of amphibians. The taxonomy provided is consistent with the International Code of Zoological Nomenclature (ICZN, 1999). Salient features of the new taxonomy are (1) the three major groups of living amphibians, caecilians/Gymnophiona, salamanders/Caudata, and frogs/Anura, form a monophyletic group, to which we restrict the name Amphibia; (2) Gymnophiona forms the sister taxon of Batrachia (salamanders 1 frogs) and is composed of two groups, Rhinatrematidae and Stegokrotaphia; (3) Stegokrotaphia is composed of two families, Ichthyophiidae (including Uraeotyphlidae) and Caeciliidae (including Scolecomorphidae and Typhlonectidae, which are regarded as subfamilies); (4) Batrachia is a highly corroborated monophyletic group, composed of two taxa, Caudata (salamanders) and Anura (frogs); (5) Caudata is composed of two taxa, Cryptobranchoidei (Cryptobranchidae and Hynobiidae) and Diadectosalamandroidei new taxon (all other salamanders); (6) Diadectosalamandroidei is composed of two taxa, Hydatinosalamandroidei new taxon (composed of Perennibranchia and Treptobranchia new taxon) and Plethosalamandroidei new taxon; (7) Perennibranchia is composed of Proteidae and Sirenidae; (8) Treptobranchia new taxon is composed of two taxa, Ambystomatidae (including Dicamptodontidae) and Salamandridae; (9) Plethosalamandroidei new taxon is composed of Rhyacotritonidae and Xenosalamandroidei new taxon; (10) Xenosalamandroidei is composed of Plethodontidae and Amphiumidae; (11) Anura is monophyletic and composed of two clades, Leiopelmatidae (including Ascaphidae) and Lalagobatrachia new taxon (all other frogs); (12) Lalagobatrachia is composed of two clades, Xenoanura (Pipidae and Rhinophrynidae) and Sokolanura new taxon (all other lalagobatrachians); (13) Bombinatoridae and Alytidae (former Discoglossidae) are each others’ closest relatives and in a clade called Costata, which, excluding Leiopelmatidae and Xenoanura, forms the sister taxon of all other frogs, Acosmanura; (14) Acosmanura is composed of two clades, Anomocoela (5 Pelobatoidea of other authors) and Neobatrachia; (15) Anomocoela contains Pelobatoidea (Pelobatidae and Megophryidae) and Pelodytoidea (Pelodytidae and Scaphiopodidae), and forms the sister taxon of Neobatrachia, together forming Acosmanura; (16) Neobatrachia is composed of two clades, Heleophrynidae, and all other neobatrachians, Phthanobatrachia new taxon; (17) Phthanobatrachia is composed of two major units, Hyloides and Ranoides; (18) Hyloides comprises Sooglossidae (including Nasikabatrachidae) and Notogaeanura new taxon (the remaining hyloids); (19) Notogaeanura contains two taxa, Australobatrachia new taxon and Nobleobatrachia new taxon; (20) Australobatrachia is a clade composed of Batrachophrynidae and its sister taxon, Myobatrachoidea (Myobatrachidae and Limnodynastidae), which forms the sister taxon of all other hyloids, excluding sooglossids; (21) Nobleobatrachia new taxon, is dominated at its base by frogs of a treefrog morphotype, several with intercalary phalangeal cartilages—Hemiphractus (Hemiphractidae) forms the sister taxon of the remaining members of this group, here termed Meridianura new taxon; (22) Meridianura comprises Brachycephalidae (former Eleutherodactylinae 1 Brachycephalus) and Cladophrynia new taxon; (23) Cladophrynia is composed of two groups, Cryptobatrachidae (composed of Cryptobatrachus and Stefania, previously a fragment of the polyphyletic Hemiphractinae) and Tinctanura new taxon; (24) Tinctanura is composed of Amphignathodontidae (Gastrotheca and Flectonotus, another fragment of the polyphyletic Hemiphractinae) and Athesphatanura new taxon; (25) Athesphatanura is composed of Hylidae (Hylinae, Pelodryadinae, and Phyllomedusinae, and excluding former Hemiphractinae, whose inclusion would have rendered this taxon polyphyletic) and Leptodactyliformes new taxon; (26) Leptodactyliformes is composed of Diphyabatrachia new taxon (composed of Centrolenidae [including Allophryne] and Leptodactylidae, sensu stricto, including Leptodactylus and relatives) and Chthonobatrachia new taxon; (27) Chthonobatrachia is composed of a reformulated Ceratophryidae (which excludes such genera as Odontophrynus and Proceratophrys and includes other taxa, such as Telmatobius) and Hesticobatrachia new taxon; (28) Hesticobatrachia is composed of a reformulated Cycloramphidae (which includes Rhinoderma) and Agastorophrynia new taxon; (29) Agastorophrynia is composed of Bufonidae (which is partially revised) and Dendrobatoidea (Dendrobatidae and Thoropidae); (30) Ranoides new taxon forms the sister taxon of Hyloides and is composed of two major monophyletic components, Allodapanura new taxon (microhylids, hyperoliids, and allies) and Natatanura new taxon (ranids and allies); (31) Allodapanura is composed of Microhylidae (which is partially revised) and Afrobatrachia new taxon; (32) Afrobatrachia is composed of Xenosyneunitanura new taxon (the ‘‘strange-bedfellows’’ Brevicipitidae [formerly in Microhylidae] and Hemisotidae) and a more normal-looking group of frogs, Laurentobatrachia new taxon (Hyperoliidae and Arthroleptidae, which includes Leptopelinae and former Astylosternidae); (33) Natatanura new taxon is composed of two taxa, the African Ptychadenidae and the worldwide Victoranura new taxon; (34) Victoranura is composed of Ceratobatrachidae and Telmatobatrachia new taxon; (35) Telmatobatrachia is composed of Micrixalidae and a worldwide group of ranoids, Ametrobatrachia new taxon; (36) Ametrobatrachia is composed of Africanura new taxon and Saukrobatrachia new taxon; (37) Africanura is composed of two taxa: Phrynobatrachidae (Phrynobatrachus, including Dimorphognathus and Phrynodon as synonyms) and Pyxicephaloidea; (38) Pyxicephaloidea is composed of Petropedetidae (Conraua, Indirana, Arthroleptides, and Petropedetes), and Pyxicephalidae (including a number of African genera, e.g. Amietia [including Afrana], Arthroleptella, Pyxicephalus, Strongylopus, and Tomopterna); and (39) Saukrobatrachia new taxon is the sister taxon of Africanura and is composed of Dicroglossidae and Aglaioanura new taxon, which is, in turn, composed of Rhacophoroidea (Mantellidae and Rhacophoridae) and Ranoidea (Nyctibatrachidae and Ranidae, sensu stricto). Many generic revisions are made either to render a monophyletic taxonomy or to render a taxonomy that illuminates the problems in our understanding of phylogeny, so that future work will be made easier. These revisions are: (1) placement of Ixalotriton and Lineatriton (Caudata: Plethodontidae: Bolitoglossinae) into the synonymy of Pseudoeurycea, to render a monophyletic Pseudoeurycea; (2) placement of Haideotriton (Caudata: Plethodontidae: Spelerpinae) into the synonymy of Eurycea, to render a monophyletic Eurycea; (3) placement of Nesomantis (Anura: Sooglossidae) into the synonymy of Sooglossus, to assure a monophyletic Sooglossus; (4) placement of Cyclorana and Nyctimystes (Anura: Hylidae: Pelodryadinae) into Litoria, but retaining Cyclorana as a subgenus, to provide a monophyletic Litoria; (5) partition of ‘‘Limnodynastes’’ (Anura: Limnodynastidae) into Limnodynastes and Opisthodon to render monophyletic genera; (6) placement of Adenomera, Lithodytes, and Vanzolinius (Anura: Leptodactylidae) into Leptodactylus, to render a monophyletic Leptodactylus; (7) partition of ‘‘Eleutherodactylus’’ (Anura: Brachycephalidae) into Craugastor, ‘‘Eleutherodactylus’’, ‘‘Euhyas’’, ‘‘Pelorius’’, and Syrrhophus to outline the taxonomic issues relevant to the paraphyly of this nominal taxon to other nominal genera; (8) partition of ‘‘Bufo’’ (Anura: Bufonidae) into a number of new or revived genera (i.e., Amietophrynus new genus, Anaxyrus, Chaunus, Cranopsis, Duttaphrynus new genus, Epidalea, Ingerophrynus new genus, Nannophryne, Peltophryne, Phrynoidis, Poyntonophrynus new genus; Pseudepidalea new genus, Rhaebo, Rhinella, Vandijkophrynus new genus); (9) placement of the monotypic Spinophrynoides (Anura: Bufonidae) into the synonymy of (formerly monotypic) Altiphrynoides to make for a more informative taxonomy; (10) placement of the Bufo taitanus group and Stephopaedes (as a subgenus) into the synonymy of Mertensophryne (Anura: Bufonidae); (11) placement of Xenobatrachus (Anura: Microhylidae: Asterophryinae) into the synonymy of Xenorhina to render a monophyletic Xenorhina; (12) transfer of a number of species from Plethodontohyla to Rhombophryne (Microhylidae: Cophylinae) to render a monophyletic Plethodontohyla; (13) placement of Schoutedenella (Anura: Arthroleptidae) into the synonymy of Arthroleptis; (14) transfer of Dimorphognathus and Phrynodon (Anura: Phrynobatrachidae) into the synonymy of Phrynobatrachus to render a monophyletic Phrynobatrachus; (15) placement of Afrana into the synonymy of Amietia (Anura: Pyxicephalidae) to render a monophyletic taxon; (16) placement of Chaparana and Paa into the synonymy of Nanorana (Anura: Dicroglossidae) to render a monophyletic genus; (17) recognition as genera of Ombrana and Annandia (Anura: Dicroglossidae: Dicroglossinae) pending placement of them phylogenetically; (18) return of Phrynoglossus into the synonymy of Occidozyga to resolve the paraphyly of Phrynoglossus (Anura: Dicroglossidae: Occidozyginae); (19) recognition of Feihyla new genus for Philautus palpebralis to resolve the polyphyly of ‘‘Chirixalus’’; (20) synonymy of ‘‘Chirixalus’’ with Chiromantis to resolve the paraphyly of ‘‘Chirixalus’’; (21) recognition of the genus Babina, composed of the former subgenera of Rana, Babina and Nidirana (Anura: Ranidae); (22) recognition of the genera Clinotarsus, Humerana, Nasirana, Pelophylax, Pterorana, Pulchrana, and Sanguirana, formerly considered subgenera of Rana (Anura: Ranidae), with no special relationship to Rana (sensu stricto); (23) consideration of Glandirana (Anura: Ranidae), formerly a subgenus of Rana, as a genus, with Rugosa as a synonym; (24) recognition of Hydrophylax (Anura: Ranidae) as a genus, with Amnirana and most species of former Chalcorana included in this taxon as synonyms; (25) recognition of Hylarana (Anura: Ranidae) as a genus and its content redefined; (26) redelimitation of Huia to include as synonyms Eburana and Odorrana (both former subgenera of Rana); (27) recognition of Lithobates (Anura: Ranidae) for all species of North American ‘‘Rana’’ not placed in Rana sensu stricto (Aquarana, Pantherana, Sierrana, Trypheropsis, and Zweifelia considered synonyms of Lithobates); (28) redelimitation of the genus Rana as monophyletic by inclusion as synonyms Amerana, Aurorana, Pseudoamolops, and Pseudorana, and exclusion of all other former subgenera; (29) redelimitation of the genus Sylvirana (Anura: Ranidae), formerly a subgenus of Rana, with Papurana and Tylerana included as synonyms

    Is The Amphibian Tree of Life really fatally flawed?

    Get PDF
    Wiens (2007, Q. Rev. Biol. 82, 55–56) recently published a severe critique of Frost et al.\u27s (2006, Bull. Am. Mus. Nat. Hist. 297, 1–370) monographic study of amphibian systematics, concluding that it is “a disaster” and recommending that readers “simply ignore this study”. Beyond the hyperbole, Wiens raised four general objections that he regarded as “fatal flaws”: (1) the sampling design was insufficient for the generic changes made and taxonomic changes were made without including all type species; (2) the nuclear gene most commonly used in amphibian phylogenetics, RAG-1, was not included, nor were the morphological characters that had justified the older taxonomy; (3) the analytical method employed is questionable because equally weighted parsimony “assumes that all characters are evolving at equal rates”; and (4) the results were at times “clearly erroneous”, as evidenced by the inferred non-monophyly of marsupial frogs. In this paper we respond to these criticisms. In brief: (1) the study of Frost et al. did not exist in a vacuum and we discussed our evidence and evidence previously obtained by others that documented the non-monophyletic taxa that we corrected. Beyond that, we agree that all type species should ideally be included, but inclusion of all potentially relevant type species is not feasible in a study of the magnitude of Frost et al. and we contend that this should not prevent progress in the formulation of phylogenetic hypotheses or their application outside of systematics. (2) Rhodopsin, a gene included by Frost et al. is the nuclear gene that is most commonly used in amphibian systematics, not RAG-1. Regardless, ignoring a study because of the absence of a single locus strikes us as unsound practice. With respect to previously hypothesized morphological synapomorphies, Frost et al. provided a lengthy review of the published evidence for all groups, and this was used to inform taxonomic decisions. We noted that confirming and reconciling all morphological transformation series published among previous studies needed to be done, and we included evidence from the only published data set at that time to explicitly code morphological characters (including a number of traditionally applied synapomorphies from adult morphology) across the bulk of the diversity of amphibians (Haas, 2003, Cladistics 19, 23–90). Moreover, the phylogenetic results of the Frost et al. study were largely consistent with previous morphological and molecular studies and where they differed, this was discussed with reference to the weight of evidence. (3) The claim that equally weighted parsimony assumes that all characters are evolving at equal rates has been shown to be false in both analytical and simulation studies. (4) The claimed “strong support” for marsupial frog monophyly is questionable. Several studies have also found marsupial frogs to be non-monophyletic. Wiens et al. (2005, Syst. Biol. 54, 719–748) recovered marsupial frogs as monophyletic, but that result was strongly supported only by Bayesian clade confidence values (which are known to overestimate support) and bootstrap support in his parsimony analysis was \u3c 50%. Further, in a more recent parsimony analysis of an expanded data set that included RAG-1 and the three traditional morphological synapomorphies of marsupial frogs, Wiens et al. (2006, Am. Nat. 168, 579–596) also found them to be non-monophyletic. Although we attempted to apply the rule of monophyly to the naming of taxonomic groups, our phylogenetic results are largely consistent with conventional views even if not with the taxonomy current at the time of our writing. Most of our taxonomic changes addressed examples of non-monophyly that had previously been known or suspected (e.g., the non-monophyly of traditional Hyperoliidae, Microhylidae, Hemiphractinae, Leptodactylidae, Phrynobatrachus, Ranidae, Rana, Bufo; and the placement of Brachycephalus within “Eleutherodactylus”, and Lineatriton within “Pseudoeurycea”), and it is troubling that Wiens and others, as evidenced by recent publications, continue to perpetuate recognition of non-monophyletic taxonomic groups that so profoundly misrepresent what is known about amphibian phylogeny

    Misuse of “Power” and other mechanical terms in sport and exercise science research

    Get PDF
    In spite of the Systùme International d’Unitùs (SI) that was published in 1960, there continues to be widespread misuse of the terms and nomenclature of mechanics in descriptions of exercise performance. Misuse applies principally to failure to distinguish between mass and weight, velocity and speed, and especially the terms "work" and "power." These terms are incorrectly applied across the spectrum from high-intensity short-duration to long-duration endurance exercise. This review identifies these misapplications and proposes solutions. Solutions include adoption of the term "intensity" in descriptions and categorisations of challenge imposed on an individual as they perform exercise, followed by correct use of SI terms and units appropriate to the specific kind of exercise performed. Such adoption must occur by authors and reviewers of sport and exercise research reports to satisfy the principles and practices of science and for the field to advance

    Spatial rigid-multi-body systems with lubricated spherical clearance joints : modeling and simulation

    Get PDF
    The dynamic modeling and simulation of spatial rigid-multi-body systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Early carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China

    Full text link
    38 brachiopod species in 27 genera and subgenera are described from the Yudong Formation in the Shidian-Baoshan area, west Yunnan, southwest China. New taxa include two new subgenera: Unispirifer (Septimispirifer) and Brachythyrina (Longathyrina), and seven new species: Eomarginifera yunnanensis, Marginatia cylindrica, Unispirifer (Unispirifer) xiangshanensis, Unispirifer (Septimispirifer) wafangjieensis, Brachythyrina (Brachythyrina) transversa, Brachythyrina (Longathyrina) baoshanensis, and Girtyella wafangjieensis. Based on the described material and constraints from associated coral and conodont faunas, the age of the brachiopod fauna from the Yudon Formation is considered late Tournaisian (Early Carboniferous), with a possibility extending into earlyViseacutean.<br /

    SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801

    Get PDF
    All known recently emerged human coronaviruses probably originated in bats1. Here we used a single experimental platform based on human lung-only mice (LoM) to demonstrate efficient in vivo replication of all recently emerged human coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) and two highly relevant endogenous pre-pandemic SARS-like bat coronaviruses. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats harbour endogenous coronaviruses capable of direct transmission into humans. Further detailed analysis of pandemic SARS-CoV-2 in vivo infection of LoM human lung tissue showed predominant infection of human lung epithelial cells, including type II pneumocytes present in alveoli and ciliated airway cells. Acute SARS-CoV-2 infection was highly cytopathic and induced a robust and sustained type I interferon and inflammatory cytokine/chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for coronavirus infection. Our results show that therapeutic and prophylactic administration of EIDD-2801, an oral broad spectrum antiviral currently in phase II–III clinical trials, dramatically inhibited SARS-CoV-2 replication in vivo and thus has significant potential for the prevention and treatment of COVID-19

    Evolution in the Genus Rhinella: A Total Evidence Phylogenetic Analysis of Neotropical True Toads (Anura: Bufonidae)

    Get PDF
    True toads of the genus Rhinella are among the most common and diverse group of Neotropical anurans. These toads are widely distributed throughout South America, inhabiting a great diversity of environments and ecoregions. Currently, however, the genus is defined solely on the basis of molecular characters, and it lacks a proper diagnosis. Although some phenetic species groups have traditionally been recognized within Rhinella, the monophyly of some of them have been rejected in previous phylogenetic analyses, and many species remain unassigned to these poorly defined groups. Additionally, the identity and taxonomy of several species are problematic and hinder the specific recognition and description of undescribed taxa. In this work, we first perform phylogenetic analyses of separate mitochondrial and nuclear datasets to test the possible occurrence of hybridiza-tion and/or genetic introgression in the genus. The comparative analysis of both datasets revealed unidirectional mitochondrial introgressions of an unknown parental species into R . horribilis (“ghost introgression”) and of R . dorbignyi into R . bernardoi; therefore, the mitochondrial and nuclear data-sets of these species were considered separately in subsequent analyses. We performed total-evidence phylogenetic analyses that included revised molecular (four mitochondrial and five nuclear genes) and phenotypic (90 characters) datasets for 83 nominal species of Rhinella, plus several undescribed and problematic species and multiple outgroups. Results demonstrate that Rhinella was nonmono-phyletic due to the position of R . ceratophrys, which was recovered as the sister taxon of Rhaebo nasicus with strong support. Among our outgroups, the strongly supported Anaxyrus + Incilius is the sister clade of all other species of Rhinella. Once R . ceratophrys is excluded, the genus Rhinellais monophyletic, well supported, and composed of two major clades. One of these is moderately supported and includes species of the former R . spinulosa Group (including R . gallardoi); the mono-phyletic R . granulosa, R . crucifer, and R . marina Groups; and a clade composed of the mitochondrial sequences of R . horribilis. The other major clade is strongly supported and composed of all the spe-cies from the non-monophyletic R . veraguensis and R . margaritifera Groups, the former R . acrolophaGroup, and R . sternosignata. Consistent with these results, we define eight species groups of Rhinella that are mostly diagnosed by phenotypic synapomorphies in addition to a combination of morpho-logical character states. Rhinella sternosignata is the only species that remains unassigned to any group. We also synonymize nine species, treat three former subspecies as full species, and suggest that 15 lineages represent putative undescribed species. Lastly, we discuss the apparently frequent occurrence of hybridization, deep mitochondrial divergence, and “ghost introgression”; the incomplete phenotypic evidence (including putative character systems that could be used for future phy-logenetic analyses); and the validity of the known fossil record of Rhinella as a source of calibration points for divergence dating analyses.Peer reviewe

    Prevalence and costs of hospitalizations for poisoning and accidental intoxication in Brazilian elderly

    Get PDF
    A cross-sectional study of secondary data/information obtained from the Hospital Information System (HIS) spanning the years 2008 - 2009 was performed. The distribution of the main hospital admissions by gender, age, color/race, region and federal unit of residence, average expenditure and average length of hospital stay, year of hospitalization and mortality rates (MR) were studied. The data collected were tabulated by TabNet and keyed into Microsoft Excel 2007. It was verified that elderly males (54.3%), from 60 to 69 years old (50.6%), nonwhites (36.3%) and residents of Southeast and North regions of the country had the highest rates of hospitalization. Seniors were hospitalized for an average of 4.8 days, and the major causes were exposure to alcohol (43.7%) and to drugs (33.9%). Expenses related to hospital admissions were, on average, R$ 529,817.70. The highest mortality rates were recorded among females (MR = 4.34), in elderly, 80 years or older (MR = 10.16) and Caucasians (MR = 3.95), where pharmacological substances with action on the Autonomic Nervous System were the leading cause of death. There are demographic differences in morbi-mortality of these elderly since, although men and younger elderly were the main victims, women and elderly of advanced age have greater mortality. The leading causes of hospitalization were alcohol and drugs

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link
    • 

    corecore