419 research outputs found

    Four stellar populations and extreme helium variation in the massive outer-halo globular cluster NGC 2419

    Full text link
    Recent work revealed that both the helium variation within globular clusters (GCs) and the relative numbers of first and second-generation stars (1G, 2G) depend on the mass of the host cluster. Precise determination of the internal helium variations and of the fraction of 1G stars are crucial constraints to the formation scenarios of multiple populations (MPs). We exploit multi-band Hubble Space Telescope photometry to investigate MPs in NGC 2419, which is one of the most-massive and distant GCs of the Galaxy, almost isolated from its tidal influence. We find that the 1G hosts the ~37% of the analyzed stars, and identified three populations of 2G stars, namely 2GA, 2GB, and 2GC, which comprise the ~20%, ~31% and ~12% of stars, respectively. We compare the observed colors of these four populations with the colors derived from appropriate synthetic spectra to infer the relative helium abundances. We find that 2GA, 2GB, and 2GC stars are enhanced in helium mass fraction by deltaY ~0.01, 0.06, and 0.19 with respectto 1G stars that have primordial helium (Y=0.246). The high He enrichment of 2GC stars is hardly reconcilable with most of the current scenarios for MPs. Furthermore, the relatively larger fraction of 1G stars (~37%) compared to other massive GCs is noticeable. By exploiting literature results, we find that the fractions of 1G stars of GCs with large perigalactic distance are typically higher than in the other GCs with similar masses. This suggests that NGC 2419, similarly to other distant GCs, lost a lower fraction of 1G stars.Comment: 10 pages, 8 figures, submitted to MNRAS January 22n

    Support of Safety Services through Vehicular Communications: The Intersection Collision Avoidance Use Case

    Get PDF
    Cooperative systems are based on the periodical exchange of standardized information, thanks to which vehicles can advertise their presence, position and the direction they are moving to, and execute sophisticated C-ITS applications that can detect potentially dangerous situations and properly react. The technological pillar, which must enable a Vehicular ad Hoc Network (VANET), is now being debated: the candidates are the traditional WiFi-based approach and the upcoming cellular one. The application effectiveness, however, depends not only on the technology, but also on how fast it is adopted and becomes widespread, i.e., the so-called technology Penetration Rate (PR). In this paper, simulation is used to evaluate the Intersection Collision Avoidance (ICA) application for both candidate technologies, and evaluated as a function of the technology PR.This work was partially supported by FCA through the DiVe project, by the C.A.R.S. center at Politecnico di Torino, and by the H2020 5G-TRANSFORMER project (Project ID 761536

    A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture.

    Get PDF
    Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment

    Short GRBs at the dawn of the gravitational wave era

    Get PDF
    We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and (ii) the rest-frame properties of a complete sample of Swift SGRBs. We show that a steep ϕ(L)La\phi(L)\propto L^{-a} with a>2.0 is excluded if the full set of constraints is considered. We implement a Monte Carlo Markov Chain method to derive the ϕ(L)\phi(L) and ψ(z)\psi(z) functions assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent distributions of intrinsic peak energy, luminosity and duration. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3×1052\times10^{52} erg/s and a redshift distribution of SGRBs peaking at z~1.5-2 satisfy all our constraints. These results hold also if no Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc (i.e. the design aLIGO range for the detection of GW produced by NS-NS merger events), 0.007-0.03 SGRBs yr1^{-1} should be detectable as gamma-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs: θjet\theta_{jet}~3-6 deg. Our luminosity function implies an average luminosity L~1.5×1052\times 10^{52} erg/s, nearly two orders of magnitude higher than previous findings, which greatly enhances the chance of observing SGRB "orphan" afterglows. Efforts should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.Comment: 13 pages, 5 figures, 2 tables. Accepted for publication in Astronomy & Astrophysics. Figure 5 and angle ranges corrected in revised versio

    A MEC-based Extended Virtual Sensing for Automotive Services

    Get PDF
    Multi-access edge computing (MEC) comes with the promise of enabling low-latency applications and of reducing core network load by offloading traffic to edge service instances. Recent standardization efforts, among which the ETSI MEC, have brought about detailed architectures for the MEC. Leveraging the ETSI model, in this paper we first present a flexible, yet full-fledged, MEC architecture that is compliant with the standard specifications. We then use such architecture, along with the popular OpenAir Interface (OAI), for the support of automotive services with very tight latency requirements. We focus in particular on the Extended Virtual Sensing (EVS) services, which aim at enhancing the sensor measurements aboard vehicles with the data collected by the network infrastructure, and exploit this information to achieve better safety and improved passengers/driver comfort. For the sake of concreteness, we select the intersection control as an EVS service and present its design and implementation within the MEC platform. Experimental measurements obtained through our testbed show the excellent performance of the MEC EVS service against its equivalent cloud-based implementation, proving the need for MEC to support critical automotive services, as well as the benefits of the solution we designed.This work was supported by the European Commission through the H2020 5G-TRANSFORMER project (Project ID 761536). The work of Christian Vitale was also supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 739551 (KIOS CoE) and from the Republic of Cyprus through the Directorate General for Euro-pean Programmes, Coordination, and Development
    corecore