308 research outputs found

    A biographical sketch of Henry Clay Morrison, D.D., editor of The Pentecostal herald ; the man and his ministry.

    Get PDF
    Nature\u27s environments -- The dynamics of blood -- Little \u27Bud\u27 -- The boy -- Conversion : the new life -- The intervening years -- The circuit rider -- Pastoral sketches -- Vanderbilt University and Else -- His Pentecost -- A new call and new vision -- Tears and triumphs -- The preacher -- The orator -- The evangelist -- The editor -- The author -- The world tour of evangelism -- The college president -- What he could have been -- Life\u27s balance sheet : not closed -- An appreciation / Ulysses Grant Foote -- Other appreciations -- The Christ of the Gospel : commencement sermon Asbury College / H.D. Morrison.https://place.asburyseminary.edu/ecommonsatsdigitalresources/1150/thumbnail.jp

    A Biographical Sketch of Henry Clay Morrison, D.D.: the Man and his Ministry

    Get PDF
    https://place.asburyseminary.edu/firstfruitsheritagematerial/1006/thumbnail.jp

    Dental Topography and Microwear Texture in Sapajus Apella

    Get PDF
    Dental microwear texture pattern has been associated with aspects of diet for a broad range of mammalian taxa. The basic idea is that soft, tough foods are sheared with a steeper angle of approach between opposing occlusal surfaces, whereas hard, brittle items are crushed with forces perpendicular to those surfaces; and this difference is manifested in anisotropic, striated microwear textures for tough foods, and complex, pitted ones for hard objects. Other factors may, however, influence microwear texture pattern and confound diet signals. For example, if tooth surface slope influences angle of approach between opposing teeth, then perhaps wear-related changes in tooth shape could affect microwear pattern. This study evaluates the effects of occlusal topography on microwear texture for a series of variably worn upper second molars of one primate species, Sapajus apella. Results indicate no significant covariation between any measured topographic attribute (average slope, angularity, relief) and microwear texture variable (complexity, anisotropy, textural fill volume). This suggests that, for this taxon at least, wear-related changes in tooth form do not affect microwear pattern in a consistent manner. This implies that variably worn teeth can be included in samples for comparisons aimed at distinguishing groups by diet

    Tracking system analytic calibration activities for the Mariner Mars 1971 mission

    Get PDF
    Data covering various planning aspects of Mariner Mars 1971 mission are summarized. Data cover calibrating procedures for tracking stations, radio signal propagation in the troposphere, effects of charged particles on radio transmission, orbit calculation, and data smoothing

    Probing complex RNA structures by mechanical force

    Full text link
    RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpretated by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps", thereby capturing -at the single molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure

    Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics

    Get PDF
    The two subunits that make up the ribosome have both distinct and cooperative functions. The 30S ribosomal subunit binds messenger RNA (mRNA) and is involved in the selection of cognate transfer RNA (tRNA) by monitoring codon–anticodon base-pairing during the decoding process. The 50S subunit catalyzes peptide-bond formation. Both subunits work in concert to move tRNAs and mRNAs relative to the ribosome in translocation, and both are the target of a large number of naturally occurring antibiotics. Thus, useful information about the mechanism of translation can be gleaned from structures of both individual subunits and the intact ribosome. In this paper, we describe our work on the determination of the atomic structure of the 30S ribosomal subunit and its complexes with RNA ligands, antibiotics, and initiation factor IF1. The results provide structural insights into how the ribosome recognizes cognate tRNA and discriminates against near-cognate tRNA. They also provide a structural basis for understanding the action of various antibiotics that target the 30S subunit

    Spatially explicit simulation of long-term boreal forest landscape dynamics: incorporating quantitative stand attributes

    Get PDF
    Spatial simulation models of long-term dynamics of forest landscapes are needed for investigating how different actual or potential disturbance regimes determine the structure and dynamics of forest landscapes. We propose a new approach to bridge the forest stand and landscape processes. Hence, while interested in the boreal forest dynamics at the landscape level, we develop a submodel of stand-level forest dynamics that responds to the landscape-level processes in a spatially explicit landscape model. Compared to the LANDIS model that we used as a starting point, our approach incorporates, in a spatially explicit and quantitative manner: (1) stand-level prediction of basal area and tree volume, and (2) seed dispersal, and sexual and asexual regeneration. Stand development is partly based on growth tables given as model input which means that stand submodel behavior is constrained within a reasonable range. We tested the approach in simulating the development of mixed boreal forests of Quebec, Canada. The simulations demonstrate that stand dynamics can be calibrated to match specific targets and that responses to changes in the initial conditions are realistic. This new modeling approach should allow addressing various theoretical questions and developing, as well as testing, alternative silvicultural and forest management scenarios

    An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics

    Get PDF
    The numerical solution of the Poisson−Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer
    corecore