8 research outputs found

    A reduced-order strategy for 4D-Var data assimilation

    Get PDF
    This paper presents a reduced-order approach for four-dimensional variational data assimilation, based on a prior EO F analysis of a model trajectory. This method implies two main advantages: a natural model-based definition of a mul tivariate background error covariance matrix Br\textbf{B}_r, and an important decrease of the computational burden o f the method, due to the drastic reduction of the dimension of the control space. % An illustration of the feasibility and the effectiveness of this method is given in the academic framework of twin experiments for a model of the equatorial Pacific ocean. It is shown that the multivariate aspect of Br\textbf{B}_r brings additional information which substantially improves the identification procedure. Moreover the computational cost can be decreased by one order of magnitude with regard to the full-space 4D-Var method

    Control of lateral boundary conditions in four-dimensional variational data assimilation for a limited area model

    No full text
    The limited area model forecasting problem is a lateral boundary condition (LBC) problem in addition to the initial condition problem. The data assimilation has traditionally been considered as a process for estimation of the initial condition only, while for the limited area data assimilation this estimation may be extended to include also the LBCs, at least during the data assimilation time window when observations are available. A procedure for such a control of the LBCs has been included in the four-dimensional variational data assimilation (4D-Var) scheme for the HIgh Resolution Limited Area Model (HIRLAM) forecasting system. A description of this procedure is provided together with results from idealised as well as real data experiments. The results indicate that control of LBCs may be important with small forecast domains and in particular for weather disturbances moving quickly into and through the forecast domain

    Evaluation of the AROME model's ability to represent ice crystal icing using in situ observations from the HAIC 2015 field campaign

    No full text
    International audienceSince pilots generally avoid intense convective areas, ice crystals icing (ICI) is an aeronautical weather incident that mainly occurs in the anvil of tropical deep convective clouds. Samples of favorable conditions for the occurrence of ICI and data from the High Altitude Ice Crystals (HAIC) 2015 field campaign in French Guiana are investigated and compared with simulations of the French operational mesoscale forecast system Application of Research to Operations at Mesoscales (AROME). To this end, a contextualization of convective systems into convective, stratiform, and cirriform regions is employed for both observations and AROME. General features of the microphysics of deep tropical convective systems are identified. The number concentration of crystals larger than 125 Όm and total water content (TWC) are strongly correlated at each temperature level, and both decrease with increasing distance from convective cores. AROME can reproduce the general behavior of the observed microphysics, especially TWC, but seems unable to simulate extreme ICI events. Reasons are sought in the assumptions performed in the microphysical scheme ICE3, and guidelines are proposed to enhance its skills in the context of ICI. In particular, the representation of the snow particle size distribution is adjusted across observations using a generalized gamma shape. This shape is found to outperform the usual Marshall–Palmer and gamma shapes. Additionally, a temperature and snow content dependence of generalized gamma parameters is found. These changes are found to significantly improve the snow concentration diagnostic of ICE3, and these modifications open the way for improvements in the ICE3 schem
    corecore