181 research outputs found

    Cardiac resynchronization therapy during rest and exercise: comparison of two optimization methods

    Get PDF
    Optimal exercise programming of cardiac resynchronization therapy (CRT) devices is unknown. We aimed to: (i) investigate variations in optimal atrioventricular (AV) and interventricular (VV) delays from rest to exercise, assessed by both echocardiography and an automated intracardiac electrogram (IEGM) method; (ii) evaluate the acute haemodynamic impact of CRT optimization performed during exercise

    MRI correlates of Parkinson's disease progression: A voxel based morphometry study

    Get PDF
    We investigated structural brain differences between a group of early-mild PD patients at different phases of the disease and healthy subjects using voxel-based morphometry (VBM). 20 mild PD patients compared to 15 healthy at baseline and after 2 years of follow-up. VBM is a fully automated technique, which allows the identification of regional differences in the gray matter enabling an objective analysis of the whole brain between groups of subjects. With respect to controls, PD patients exhibited decreased GM volumes in right putamen and right parietal cortex. After 2 years of disease, the same patients confirmed GM loss in the putamen and parietal cortex; a significant difference was also observed in the area of pedunculopontine nucleus (PPN) and in the mesencephalic locomotor region (MLR). PD is associated with brain morphological changes in cortical and subcortical structures. The first regions to be affected in PD seem to be the parietal cortex and the putamen. A third structure that undergoes atrophy is the part of the inferior-posterior midbrain, attributable to the PPN and MLR. Our findings provide new insight into the brain involvement in PD and could contribute to a better understanding of the sequence of events occurring in these patients

    Neurophysiological and neuroradiological test for early poor outcome (Cerebral Performance Categories 3\u20135) prediction after cardiac arrest: Prospective multicentre prognostication data

    Get PDF
    The data presented here are related to our research article entitled \u201cNeurophysiology and neuroimaging accurately predict poor neurological outcome within 24 hours after cardiac arrest: a prospective multicentre prognostication study (ProNeCA)\u201d [1]. We report a secondary analysis on the ability of somatosensory evoked potentials (SEPs), brain computed tomography (CT) and electroencephalography (EEG) to predict poor neurological outcome at 6 months in 346 patients who were comatose after cardiac arrest. Differently from the related research article, here we included cerebral performance category (CPC) 3 among poor outcomes, so that the outcomes are dichotomised as CPC 1\u20132 (absent to mild neurological disability: good outcome) vs. CPC 3\u20135 (severe neurological disability, persistent vegetative state, or death: poor outcome). The accuracy of the index tests was recalculated accordingly. A bilaterally absent/absent-pathological amplitude (AA/AP) N20 SEPs wave, a Grey Matter/White Matter (GM/WM) ratio <1.21 on brain CT and an isoelectric or burst suppression EEG predicted poor outcome with 49.6%, 42.2% and 29.8% sensitivity, respectively, and 100% specificity. The distribution of positive results of the three predictors did not overlap completely in the population of patients with poor outcome, so that when combining them the overall sensitivity raised to 61.2%

    Frequency and outcome of olfactory impairment and sinonasal involvement in hospitalized patients with COVID-19

    Get PDF
    Background: Olfactory dysfunction has shown to accompany COVID-19. There are varying data regarding the exact frequency in the various study population. The outcome of the olfactory impairment is also not clearly defined. Objective: To find the frequency of olfactory impairment and its outcome in hospitalized patients with positive swab test for COVID-19. Methods: This is a prospective descriptive study of 100 hospitalized COVID-19 patients, randomly sampled, from February to March 2020. Demographics, comorbidities, and laboratory findings were analyzed according to the olfactory loss or sinonasal symptoms. The olfactory impairment and sinonasal symptoms were evaluated by 9 Likert scale questions asked from the patients. Results: Ninety-two patients completed the follow-up (means 20.1 (± 7.42) days). Twenty-two (23.91) patients complained of olfactory loss and in 6 (6.52) patients olfactory loss was the first symptom of the disease. The olfactory loss was reported to be completely resolved in all but one patient. Thirty-nine (42.39) patients had notable sinonasal symptoms while rhinorrhea was the first symptom in 3 (3.26). Fifteen patients (16.3) had a taste impairment. Patients with sinonasal symptoms had a lower age (p = 0.01). There was no significant relation between olfactory loss and sinonasal symptoms (p = 0.07). Conclusions: Sudden olfactory dysfunction and sinonasal symptoms have a considerable prevalence in patients with COVID-19. No significant association was noted between the sinonasal symptoms and the olfactory loss, which may suggest that other mechanisms beyond upper respiratory tract involvement are responsible for the olfactory loss. © 2020, Fondazione Società Italiana di Neurologia

    Are patients with GBA-Parkinson disease good candidates for deep brain stimulation? A longitudinal multicentric study on a large Italian cohort

    Get PDF
    Background: GBA variants increase the risk of developing Parkinson disease (PD) and influence its outcome. Deep brain stimulation (DBS) is a recognised therapeutic option for advanced PD. Data on DBS long-term outcome in GBA carriers are scarce. Objective: To elucidate the impact of GBA variants on long-term DBS outcome in a large Italian cohort. Methods: We retrospectively recruited a multicentric Italian DBS-PD cohort and assessed: (1) GBA prevalence; (2) pre-DBS clinical features; and (3) outcomes of motor, cognitive and other non-motor features up to 5 years post-DBS. Results: We included 365 patients with PD, of whom 73 (20%) carried GBA variants. 5-year follow-up data were available for 173 PD, including 32 mutated subjects. GBA-PD had an earlier onset and were younger at DBS than non-GBA-PD. They also had shorter disease duration, higher occurrence of dyskinesias and orthostatic hypotension symptoms. At post-DBS, both groups showed marked motor improvement, a significant reduction of fluctuations, dyskinesias and impulsive-compulsive disorders (ICD) and low occurrence of most complications. Only cognitive scores worsened significantly faster in GBA-PD after 3 years. Overt dementia was diagnosed in 11% non-GBA-PD and 25% GBA-PD at 5-year follow-up. Conclusions: Evaluation of long-term impact of GBA variants in a large Italian DBS-PD cohort supported the role of DBS surgery as a valid therapeutic strategy in GBA-PD, with long-term benefit on motor performance and ICD. Despite the selective worsening of cognitive scores since 3 years post-DBS, the majority of GBA-PD had not developed dementia at 5-year follow-up

    Current treatment practice of Guillain-Barré syndrome

    Get PDF
    Objective: To define the current treatment practice of Guillain-Barré syndrome (GBS). Methods: The study was based on prospective observational data from the first 1,300 patients included in the International GBS Outcome Study. We described the treatment practice of GBS in general, and for (1) severe forms (unable to walk independently), (2) no recovery after initial treatment, (3) treatment-related fluctuations, (4) mild forms (able to walk independently), and (5) variant forms including Miller Fisher syndrome, taking patient characteristics and hospital type into account. Results: We excluded 88 (7%) patients because of missing data, protocol violation, or alternative diagnosis. Patients from Bangladesh (n = 189, 15%) were described separately because 83% were not treated. IV immunoglobulin (IVIg), plasma exchange (PE), or other immunotherapy was provided in 941 (92%) of the remaining 1,023 patients, including patients with severe GBS (724/743, 97%), mild GBS (126/168, 75%), Miller Fisher syndrome (53/70, 76%), and other variants (33/40, 83%). Of 235 (32%) patients who did not improve after their initial treatment, 82 (35%) received a second immune modulatory treatment. A treatment-related fluctuation was observed in 53 (5%) of 1,023 patients, of whom 36 (68%) were re-treated with IVIg or PE. Conclusions: In current practice, patients with mild and variant forms of GBS, or with treatment-related fluctuations and treatment failures, are frequently treated, even in absence of trial data to support this choice. The variability in treatment practice can be explained in part by the lack of evidence and guidelines for effective treatment in these situations

    Adult-onset KMT2B-related dystonia

    Get PDF
    KMT2B-related dystonia (DYT-KMT2B, also known as DYT28) is an autosomal dominant neurological disorder characterized by varying combinations of generalized dystonia, psychomotor developmental delay, mild-to-moderate intellectual disability and short stature. Disease onset occurs typically before 10 years of age. We report the clinical and genetic findings of a series of subjects affected by adult-onset dystonia, hearing loss or intellectual disability carrying rare heterozygous KMT2B variants. Twelve cases from five unrelated families carrying four rare KMT2B missense variants predicted to impact protein function are described. Seven affected subjects presented with adult-onset focal or segmental dystonia, three developed isolated progressive hearing loss, and one displayed intellectual disability and short stature. Genome-wide DNA methylation profiling allowed to discriminate these adult-onset dystonia cases from controls and early-onset DYT-KMT2B patients. These findings document the relevance of KMT2B variants as a potential genetic determinant of adult-onset dystonia and prompt to further characterize KMT2B carriers investigating non-dystonic features

    Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients

    Get PDF
    Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress

    Telecardiology and Remote Monitoring of Implanted Electrical Devices: The Potential for Fresh Clinical Care Perspectives

    Get PDF
    Telecardiology may help confront the growing burden of monitoring the reliability of implantable defibrillators/pacemakers. Herein, we suggest that the evolving capabilities of implanted devices to monitor patients’ status (heart rhythm, fluid overload, right ventricular pressure, oximetry, etc.) may imply a shift from strictly device-centered follow-up to perspectives centered on the patient (and patient-device interactions). Such approaches could provide improvements in health care delivery and clinical outcomes, especially in the field of heart failure. Major professional, policy, and ethical issues will have to be overcome to enable real-world implementation. This challenge may be relevant for the evolution of our health care systems
    corecore