1,630 research outputs found

    Gravito-magnetic amplification in cosmology

    Full text link
    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge-invariant. We show that the nature and the outcome of the gravito-magnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B-field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B-fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravito-magnetic interaction and discuss its potential implications.Comment: Typos corrected, clarifications added, published in PR

    Radio spectral study of the cluster of galaxies Abell 2255

    Full text link
    Spectral index studies of halos, relics, and radio galaxies provide useful information on their origin and connection with merger processes. We present WSRT multi-wavelength observations of the galaxy cluster Abell 2255 at 25 cm, 85 cm, and 2 m. The spectral index images allowed us to study the integrated spectrum of halo and relic and to investigate the physical properties of the Beaver head-tail radio galaxy belonging to the cluster. In the radio halo, the spectral index is steeper at the center and flatter at the locations of the radio filaments, clearly detected at 25 cm. In the relics, the spectral index flattens, moving away from the cluster center. For the Beaver radio galaxy, the spectrum severely steepens from the head towards the end of the tail, because of the energy losses suffered by the relativistic particles. In the 2 m map, which is the first high-sensitivity image presented in the literature at such a long wavelength, a new Mpc-size emission region is detected between the known radio halo and the NW relic. Not detecting this feature in the more sensitive 85 cm observations implies that it must have a very steep spectrum (alpha <= -2.6). The observational properties of the radio halo suggest that either we are looking at a superposition of different structures (filaments in the foreground plus real halo in the background) seen in projection across the cluster center or that the halo is intrinsically peculiar. The newly detected extended region to the NW of the halo could be considered as an asymmetric extension of the halo itself. However, since radio halos are known in the literature as structures showing a regular morphology, the new feature could represent the first example of steep Mpc-size diffuse structures (MDS), detected around clusters at very low frequencies.Comment: 23 pages, 18 figures. A&A, in pres

    Specificity of SPIO particles for characterization of liver hemangiomas using MRI

    Get PDF
    We investigated the specificity of superparamagnetic iron oxide (SPIO)â€"enhanced T1-weighted spin-echo (SE) magnetic resonance (MR) images for the characterization of liver hemangiomas. When imaging liver hemangiomas, which are the most frequent benign liver tumors, a method with very high specificity is required, which will obviate other studies, follow-up, or invasive diagnostic procedures such as percutaneous biopsy. Eighty-three lesions were examined by MR imaging at 1.5 T before and after intravenous injection of SPIO particles. Lesions were categorized as follows according to the final diagnosis: 37 hemangiomas, nine focal nodular hyperplasias (FNHs), 19 hepatocellular carcinomas (HCCs), and 18 metastases. Their signal intensity values were normalized to muscle and compared. The only lesions showing a significant increase in signal intensity ratio (lesion to muscle) on postcontrast T1-weighted SE images were hemangiomas (p < 0.001). The signal intensity ratio of hemangiomas increased on average by 70%. Based on receiver operating characteristic analysis and using a cutoff level of 50% signal increase, the specificity and sensitivity of SPIO-enhanced MR imaging for the characterization of hemangiomas would be 100% and 70%, respectively. The T1 effect of SPIO particles can help differentiate hemangiomas from other focal liver lesions such as FNHs, HCCs, and metastases and may obviate biopsy. When using SPIO particles for liver imaging, it is useful to add a T1-weighted sequence to T2-weighted images, thereby providing additional information for lesion characterizatio

    Actin is a binding protein for angiogenin.

    Full text link

    Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome.

    Get PDF
    The short rib polydactyly syndromes (SRPSs) are a heterogeneous group of autosomal recessive, perinatal lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs and polydactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify an additional SRPS gene and further unravel the functional basis for IFT. We perform whole-exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable length, including hyperelongated, cilia, Hedgehog pathway impairment and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation and skeletogenesis

    A Magnetized Local Supercluster and the Origin of the Highest Energy Cosmic Rays

    Full text link
    A sufficiently magnetized Local Supercluster can explain the spectrum and angular distribution of ultra-high energy cosmic rays. We show that the spectrum of extragalactic cosmic rays with energies below ∼1020\sim 10^{20} eV may be due to the diffusive propagation in the Local Supercluster with fields of ∼10−8−10−7\sim 10^{-8} - 10^{-7} Gauss. Above ∼1020\sim 10^{20} eV, cosmic rays propagate in an almost rectilinear way which is evidenced by the change in shape of the spectrum at the highest energies. The fit to the spectrum requires that at least one source be located relatively nearby at ∼10−15\sim 10-15 Mpc away from the Milky Way. We discuss the origin of magnetic fields in the Local Supercluster and the observable predictions of this model.Comment: 11 pages, 2 figures, submitted to PR

    Large-scale magnetic fields in cosmology

    Full text link
    Despite the widespread presence of magnetic fields, their origin, evolution and role are still not well understood. Primordial magnetism sounds appealing but is not problem free. The magnetic implications for the large-scale structure of the universe still remain an open issue. This paper outlines the advantages and shortcomings of early-time magnetogenesis and the typical role of B-fields in linear structure-formation scenarios.Comment: Invited Talk (36th EPS Conference on Plasma Physics, 2009

    Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence

    Full text link
    We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest energy of an accelerated ion and electron, as well as of the characteristic time for conceivable energy restrictions, are systematically presented. We also discuss a feasible method of verifying the theoretical predictions. The strong, anisotropic turbulence reflecting cosmic filaments might be the key to the problem of the acceleration mechanism of the highest energy cosmic rays exceeding 100 EeV (10^{20} eV), detected in recent air shower experiments.Comment: 39 pages, 2 figures, accepted for publication in Ap
    • …
    corecore