1,879 research outputs found
Benchmarking of a 1D Scrape-off layer code SOLF1D with SOLPS and its use in modelling long-legged divertors
A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is
benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for
two different collisionalities. Based on this comparison, SOLF1D is then used
to model the effects of divertor leg stretching in 1D, in support of the
planned Super-X divertor on MAST. The aim is to separate magnetic flux
expansion from volumetric power losses due to recycling neutrals by stretching
the divertor leg either vertically or radially.Comment: 31 pages, 17 figures. This is an author-created, un-copyedited
version of an article accepted for publication in Plasma Physics and
Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
First principles of modelling the stabilization of microturbulence by fast ions
The observation that fast ions stabilize ion-temperature-gradient-driven
microturbulence has profound implications for future fusion reactors. It is
also important in optimizing the performance of present-day devices. In this
work, we examine in detail the phenomenology of fast ion stabilization and
present a reduced model which describes this effect. This model is derived from
the high-energy limit of the gyrokinetic equation and extends the existing
"dilution" model to account for nontrivial fast ion kinetics. Our model
provides a physically-transparent explanation for the observed stabilization
and makes several key qualitative predictions. Firstly, that different classes
of fast ions, depending on their radial density or temperature variation, have
different stabilizing properties. Secondly, that zonal flows are an important
ingredient in this effect precisely because the fast ion zonal response is
negligible. Finally, that in the limit of highly-energetic fast ions, their
response approaches that of the "dilution" model; in particular, alpha
particles are expected to have little, if any, stabilizing effect on plasma
turbulence. We support these conclusions through detailed linear and nonlinear
gyrokinetic simulations.Comment: 29 pages, 10 figures, 3 table
Direct Gyrokinetic Comparison of Pedestal Transport in JET with Carbon and ITER-Like Walls
This paper compares the gyrokinetic instabilities and transport in two
representative JET pedestals, one (pulse 78697) from the JET configuration with
a carbon wall (C) and another (pulse 92432) from after the installation of
JET's ITER-like Wall (ILW). The discharges were selected for a comparison of
JET-ILW and JET-C discharges with good confinement at high current (3 MA,
corresponding also to low ) and retain the distinguishing features of
JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A
comparison of the profiles and heating power reveals a stark qualitative
difference between the discharges: the JET-ILW pulse (92432) requires twice the
heating power, at a gas rate of , to sustain roughly
half the temperature gradient of the JET-C pulse (78697), operated at zero gas
rate. This points to heat transport as a central component of the dynamics
limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW
pedestal transport paradigm, which is proposed for further examination by both
theory and experiment. ILW conditions modify the density pedestal in ways that
decrease the normalized pedestal density gradient , often via an outward
shift of the density pedestal. This is attributable to some combination of
direct metal wall effects and the need for increased fueling to mitigate
tungsten contamination. The modification to the density profile increases , thereby producing more robust ion temperature gradient (ITG) and
electron temperature gradient driven instability. The decreased pedestal
gradients for JET-ILW (92432) also result in a strongly reduced
shear rate, further enhancing the ion scale turbulence. Collectively, these
effects limit the pedestal temperature and demand more heating power to achieve
good pedestal performance
Growth and characterization of SiC epitaxial layers on Si- and C-face 4H SiC substrates by chemical-vapor deposition
High-quality Schottky junctions have been fabricated on n-type 4H SiC epitaxial layers grown by chemical-vapor deposition on C- and Si-face substrates in order to understand the effect of growth direction on the growth mechanism and formation of defects. Atomic force microscopy analysis showed dramatic differences between the surfaces of SiC epilayers grown on C and Si faces. There was a significant step bunching in the SiC grown on Si-face substrates. Current-voltage, capacitance-voltage, and deep-level transient spectroscopy (DLTS) measurements were carried out on the Schottky junctions to analyze the junction characteristics. The Schottky junctions on C-face SiC showed larger barrier heights than those on Si-face SiC, showing that each face has a different surface energy. The barrier heights of Ni Schottky junctions were found to be 1.97 and 1.54 eV for C-face and Si-face materials, respectively. However, the deep-level spectra obtained by DLTS were similar, regardless of the increased surface roughness of the Si-face 4H SiC
Tests of Statistical Methods for Estimating Galaxy Luminosity Function and Applications to the Hubble Deep Field
We studied the statistical methods for the estimation of the luminosity
function (LF) of galaxies. We focused on four nonparametric estimators:
estimator, maximum-likelihood estimator of Efstathiou et al.
(1988), Cho{\l}oniewski's estimator, and improved Lynden-Bell's estimator. The
performance of the estimator has been recently questioned,
especially for the faint-end estimation of the LF. We improved these estimators
for the studies of the distant Universe, and examined their performances for
various classes of functional forms by Monte Carlo simulations. We also applied
these estimation methods to the mock 2dF redshift survey catalog prepared by
Cole et al. (1998). We found that estimator yields a completely
unbiased result if there is no inhomogeneity, but is not robust against
clusters or voids. This is consistent with the well-known results, and we did
not confirm the bias trend of estimator claimed by Willmer
(1997) in the case of homogeneous sample. We also found that the other three
maximum-likelihood type estimators are quite robust and give consistent results
with each other. In practice we recommend Cho{\l}oniewski's estimator for two
reasons: 1. it simultaneously provides the shape and normalization of the LF;
2. it is the fastest among these four estimators, because of the algorithmic
simplicity. Then, we analyzed the photometric redshift data of the Hubble Deep
Field prepared by Fern\'{a}ndez-Soto et al. (1999) using the above four
methods. We also derived luminosity density at - and
-band. Our -band estimation is roughly consistent with that of Sawicki,
Lin, & Yee (1997), but a few times lower at . The evolution of
is found to be less prominent.Comment: To appear in ApJS July 2000 issue. 36 page
The Luminosity Function of Galaxies in SDSS Commissioning Data
During commissioning observations, the Sloan Digital Sky Survey (SDSS) has
produced one of the largest existing galaxy redshift samples selected from CCD
images. Using 11,275 galaxies complete to r^* = 17.6 over 140 square degrees,
we compute the luminosity function of galaxies in the r^* band over a range -23
< M < -16 (for h=1). The result is well-described by a Schechter function with
parameters phi_* = 0.0146 +/- 0.0012 h^3 Mpc^{-3}, M_* = -20.83 +/- 0.03, and
alpha = -1.20 +/- 0.03. The implied luminosity density in r^* is j = (2.6 +/-
0.3) x 10^8 h L_sun Mpc^{-3}. The surface brightness selection threshold has a
negligible impact for M < -18. We measure the luminosity function in the u^*,
g^*, i^*, and z^* bands as well; the slope at low luminosities ranges from
alpha=-1.35 to alpha=-1.2. We measure the bivariate distribution of r^*
luminosity with half-light surface brightness, intrinsic color, and morphology.
High surface brightness, red, highly concentrated galaxies are on average more
luminous than low surface brightness, blue, less concentrated galaxies. If we
synthesize results for R-band or b_j-band using the Petrosian magnitudes with
which the SDSS measures galaxy fluxes, we obtain luminosity densities 2.0 times
that found by the Las Campanas Redshift Survey in R and 1.4 times that found by
the Two-degree Field Galaxy Redshift Survey in b_j. We are able to reproduce
the luminosity functions obtained by these surveys if we also mimic their
isophotal limits for defining galaxy magnitudes, which are shallower and more
redshift dependent than the Petrosian magnitudes used by the SDSS. (Abridged)Comment: 49 pages, including 23 figures, accepted by AJ; some minor textual
changes, plus an important change in comparison to LCR
Approximate analytic expressions using Stokes model for tokamak polarimetry and their range of validity
The analysis of the polarimetry measurements has the aim of validating models (De Marco and Segre 1972 Plasma Phys. 14 245), with a careful attention to the clarification of their limits of application. In this paper a new approximation method is introduced, the so-called special constant Omega direction (SCOD), which gives an analytical solution to the polarimetry exact Stokes model equations. The available approximate solutions (including SCOD) of the polarimetry propagation equations are presented, compared and their application limits determined, using a reference tokamak configuration, which is a simplified equilibrium for a circular tokamak. The SCOD approximation is compared successfully to the Stokes model in the context also of equilibria evaluated for two JET discharges. The approximation methods are analytical or very simple mathematical expressions which can also be used in equilibrium codes for their optimization
A power-balance model of the density limit in fusion plasmas: application to the L-mode tokamak
A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald- like scaling, alpha I-p(8/9), for the RFP and the ohmic tokamak, a mixed scaling, alpha (PIp4/9)-I-4/9, for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, arc taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit
Stopping power dependence of nitrogen sputtering yields in copper nitride films under swift-ion irradiation: Exciton model approach
Nitrogen sputtering yields as high as 104 atoms/ion, are obtained by irradiating N-rich-Cu3N films (N concentration: 33 ± 2 at.%) with Cu ions at energies in the range 10?42 MeV. The kinetics of N sputtering as a function of ion fluence is determined at several energies (stopping powers) for films deposited on both, glass and silicon substrates. The kinetic curves show that the amount of nitrogen release strongly increases with rising irradiation fluence up to reaching a saturation level at a low remaining nitrogen fraction (5?10%), in which no further nitrogen reduction is observed. The sputtering rate for nitrogen depletion is found to be independent of the substrate and to linearly increase with electronic stopping power (Se). A stopping power (Sth) threshold of ?3.5 keV/nm for nitrogen depletion has been estimated from extrapolation of the data. Experimental kinetic data have been analyzed within a bulk molecular recombination model. The microscopic mechanisms of the nitrogen depletion process are discussed in terms of a non-radiative exciton decay model. In particular, the estimated threshold is related to a minimum exciton density which is required to achieve efficient sputtering rates
- …
