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Abstract

Fluid simulation of edge plasmas is a challenging task due to several reasons. Firstly,

regions characterized by the presence of strong gradients form often near the divertor plates,

due to the interaction of the plasma with the neutral atoms and ions impurities coming

from the solid walls. These fronts move with time, and must be well captured by the

computational method in order to obtain accurate descriptions of the plasma edge physics.

Moreover, any attempt to realistically simulate the tokamak edge environment must face

the complex Scrape-o�-Layer geometry. For the computations to be e�cient, it is important

to use grids well adapted to the shape of the domain and the features of the represented

functions, which are not known before the calculations. For this reason, many e�orts have

been devoted in the past to provide simulation codes with adaptive meshes. In this work we

compare two adaptive numerical methods developed independently by the authors. This is

done by studying a set of test problems. For the more simple cases studied, the analytical

solution is available, providing an accurate benchmark for the code performances.



1 Introduction

Obtaining accurate uid simulations of the edge plasma region is very di�cult. One of the
main problems is the presence in the plasma properties of strong and moving gradients near
the solid walls, particularly in the vicinity of the divertor plates. Moreover, the shape of
the tokamak devices is complex, and requires considerable e�orts to be adequately �tted.
Many important phenomena take place in the regions of strong gradients (e.g. radiation-
recombination), so that it is critical to represent them in detail. Automatically adaptive
meshes are an important tool to face this problem, because they allow to obtain a good res-
olution of the most interesting regions while keeping as low as possible the total number of
nodes. Unfortunately, a completely satisfactory method for their generation is presently lack-
ing, despite the many e�orts devoted to it [Batishchev, 1999][Zanino, 1998]. An additional
di�culty is represented by the strong anisotropies in the plasma transport properties. As a
consequence, meshes well aligned with the magnetic �eld are required in order to estimate
the gradients of the plasma parameters.

In the following, we compare two adaptive numerical methods developed independently
by the authors to perform plasma uid simulations. The layout of the paper is as follows.
In section three we describe briey the two codes used: FE/BL2D [Subba, 1998] and RRC
[Batishchev, 1998]. Section four is devoted to the description of the mesh generation pro-
cedures. In section �ve we present the results obtained by solving independently some very
simple problems in order to test the code accuracy. We also present some quantitative state-
ments on the alignment required between the mesh and the magnetic �eld. In section six
we describe some results obtained in a more realistic geometry. Finally, in section seven, we
summarize the main points of the comparison.

2 Codes description

In this section we give some details about the numerical methods implemented in the two
codes FE/BL2D and RRC. This will be useful to better understand the following comparison.

2.1 FE/BL2D

FE/BL2D is the coupling of the uid code FE with the automatic adaptive generator of
triangular meshes BL2D. It solves the higlhy nonlinear, time dependent, di�usion-convection
equation:

ut � (k?u
�u?)? � (kku

�uk)k + div(au) = S(x; y; u) (1)

where u is the dependent variable, K? = k?u
� and Kk = kku

� are the components of the
di�usion tensor, a is the convective velocity and S is a source term. If the dependent variable
u is thought of as the temperature, then equation (1) can be a model of the energy transport
in a plasma. Note that equation (1) has been written in a coordinate system whose axis are
locally aligned with (and perpendicular to) the magnetic �eld.

FE/BL2D solves equation (1) with the �nite elements approach. It advances in time
using the theta method, so that it is possible to implement a number of di�erent schemes,
ranging from the explicit up to full implicit. In all the calculations presented in this paper,
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the full implicit scheme was chosen. The discretization of equation (1) leads, at each time
step, to a nonlinear algebraic system to be solved. This is done in two nested loops. In the
outer one, the equations are linearized with the Newton's algorithm. As Newton's method
converges fastly but needs a good �rst approximation of the solution, we increase its radius
of convergence with a backtracking procedure. In the inner loop the linear system generated
at each Newton iteration is solved with a preconditioned Generalized Minimum Residual
method (GMRES). At the beginnin of the computations, a mesh over the domain and an
initial condition are assigned. The initial condition is stored, and at each time step the
relative variation of the last obtained solution from it is checked. When the change exceeds
a user speci�ed threshold, FE suspends temporarily the calculations and gives the control
of the procedure to the mesh generator BL2D. This produces a new mesh adapted to the
last solution, which is then interpolated on the new grid. After that, FE starts again. The
solution interpolated on the new mesh from BL2D is taken as the new reference value to
choose when a next updating will be necessary.

2.2 RRC

The approach used bu RRC (Recursive Re�nement Coarsening) exhibits a composite nature.
Overall it may be called adaptive grid �nite-volumes. With this method, the unknowns are
de�ned in the "centers" of the cells. The total number of cells may vary from the previous
iteration to the next iteration of the mesh adaptation. The number of neighbors for any cell
is not �xed. A cell is re�ned when the variation of any important function of the solution
(e.g. S(u)) di�ers more than E from ANY of it's neighbors. A cell is coarsened when this
di�erence is smaller than � (provided � << E) for ALL the neighboring elements.

The scheme is conservative, because all uxes through adjacent cell surfaces are set to
be the same. This is done by using a continuous 6-point (2nd order) or 2-point (1st order)
interpolation which includes two adjacent cells. Moreover, we keep the mesh aligned with
the magnetic �eld. Thus, the parallel ux does not "contaminate" the perpendicular ux.
The set of implicit algebraic equations is solved by in iterative over-relaxation method,
which is used in explicit-implicit modi�cation. The convergence of iterations (mesh and/or
coe�cients adjusted) for the non-linear analytical problem of section 4.2 is �ne (shown in
Fig 1)

3 Mesh generation

3.1 BL2D

BL2D is an automatic adaptive generator of triangular meshes. It was developed aiming at
the needs of the aeronautical community [Bourbaki, 1997], but shown good performances
also for plasma simulations. It uses the Delaunay's method to generate a triangular grid.
BL2D measures the distances according to a local, user speci�ed, metric. The grid will then
be almost equitaleral (with size length ' 1) if measured on the local (non euclidean) metric.
This will appear as an anisotropic grid in the euclidean plane. The user inuences the grid
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generation process by specifying a suitable metric map on the computational domain. This
is done in FE/BL2D according to the following steps:

� First, for each grid point a map of the hessian H of the last obtained solution is
determined. Il l is the local characteristic grid size, lHl will provide an estimate for
the local interpolation error.

� To specify the metric it is su�cient to choose its eigenvalues and eigenvectors. A
possible choice could simply consist in taking the absolute values of the eigenvalues
of H and the same eigenvectors. This would result in a uniform distribution of the
interpolation error. Let's call M1 the matrix map de�ned in this way.

� If �i are the eigenvalues of M1 , de�ne the norm of M1 as kM1k = ((�1)2 + (�2)2)1=2.
This will set a local characteristic size for the grid spacing. Let �1 and �2 be the
maximum and minimum of kM1k. It is desirable to control the range of allowable grid
spacings. This can be done by specifying the corresponding range of acceptable metric
norms, let it be (m1;m2). Then, rescale locally (with scale factors depending on the
local value of kM1k) the matrix M1 so as the interval (�1; �2) will be superposed to
(m1;m2).

� Finally, produce the metricM by stretching locally the eigenvalues of M1 (at constant
norm) so as the unit (according to the metricM) lengths in the directions perpendicular
and parallel to the magnetic �eld will appear to have a user determined ration in the
physical plane.

3.2 RRC

The initial mesh used by RRC is created by importing the A- and G- �les from EFIT. Then,
the grid generator �nds the magnetic axis, the X point and the strike points. After that, it
analyzes the magnetic ux (for the case considered here it was given by 33x33 arrray), and
distributes the nodes along the magnetic surfaces. At this point, it creates a connectivity list
by keeping two sides of each quadrilateral parallel to the magnetic �eld. Finally, it converts
the initial structured data into the format adopted by RRC code. Fig 2 and Fig 3 illustrate
the logic used by the grid generator.

The initial mesh so created is structured (regular), as shown in Fig 4. Thus, this approach
can be easily applied to any existing structured meshes. During the calculations, each cell
can be subdivided into four �ner cells if the local gradient becomes high. This process is
continued until saturation, as can be seen from Fig 5 and 13a. If the gradient becomes small,
then the coarsening of the mesh may happen. Thus, the algorithm is exible and reversible.

4 Test problems

In this section we describe some simple test problems that we solved independently with both
the codes in order to check and compare the accuracy and reliability of the two methods. We
also present some quantitative statements about the degree of alignment required between
the mesh and the magnetic �eld in order to obtain good evaluations of the uid uxes.
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4.1 Bifurcated solutions

We solved the equation:

(Kk(u)uy)y = C
u

u0
exp(�(

u� u0

�
)2) (2)

on the square (x; y)�(0; 1)� (0; 1) and with Kk(u) = kku
2:5. The boundary condition at the

sides x = 0 and x = 1 were ux = 0. At the other two boundaries, we imposed

�Kk(u)uyjy=0 = u; �Kk(u)uyjy=1 = �1 (3)

Note that, even if it was solved on a bidimensional domain, this problem actually reduced
to be onedimensional. It can be shown that the problem (2)-(3) can admit two coexisting
solutions, depending on the initial condition [Batishchev, 1999]. If the initial temperature
pro�le is su�ciently high, the source is almost inactive. Then the energy entering from the
side y = 1 di�uses across all the domain and exits from the side y = 0. In this case, the
steady temperature pro�le is almost at along all the domain; let's call this the hot solution.
Conversely, if the initial pro�le is low, the energy cannot be transmitted across the boundary
y = 0, because the di�usion coe�cient is strongly reduced. Then the temperature incrases
until the source term activates and radiates almost all the incoming ux. We will speak
in this case of the cold solution. We solved this problem independently with the two codes
using the parameter values: kk = 10�4, C = 50, u0 = 15, � = 4 and  = 0:03. In Fig 6 we
compare the hot and cold solutions obtained with the two codes FE/BL2D and RRC.

4.2 Functions with variable sharpness

We solved the equation
�(k?u

�ux)x � (kku
�uy)y = S (4)

on the square (x; y)�(0; 1)� (0; 1) and Dirichlet boundary conditions at the four sides. The
source term was chosen to be:

S(u; x; y) =

8>>><
>>>:

�u��1(u0)(c2�2(u(�+ 1) � �u0)� ua)+
�T ��1(u0)(c2(u(� + 1)� ��)� ub) ; y < yf(x)
u��1(u� 1 � u0)(d2�2(�(u� 1 � u0) + u)� eu)+
u��1(u� 1 � u0)(d2(�(u� 1� u0) + u)� gu) ; y � yf (x):

with
yf(x) = yv + rjx� xvj

s (5)

The coe�cients a, b, c, d, e, g are de�ned as

a = �p(yf � y)p�2f;

b = �p(p� 1)(yf � y)p�2;

c = �p(yf � y)p�1;

d = �p(y � yf)
p�1;

e = �p(y � yf )
p�2f;

f = (p� 1)�2 + (yf � y)�;

g = �p(p� 1)(y � yf)
p�2

4



where � = rs(x� xv)s�1 and � = rs(s� 1)(x� xv)s�2

Despite its apparent complexity, this source term is extremely useful, because the corre-
sponding solution is:

u(x; y) =

(
0:5 exp(��(yf(x)� y)p) + u0 if y � yf(x)

1� 0:5 exp(��(y � yf (x))p) + u0 if y � yf(x)
(6)

Formula (6) describes a function depending on the seven parameters �, p, u0, yv, r, xv and s.
The contours of this function show a characteristic V shape, with gradient strentgh varying
according to the chosen parameter values. Consequently, it provides a very useful test to
determine the numerical performances of any code, because its di�culty can be varied by
the user. With the parameter values � = � = 0, � = 1, p = 2, r = 2, xv = 0:45, yv = 0:35,
kk = k? both codes could reproduce the analytical solution with an average error of O(10�3),
but RRC shown a greater e�ciency. With more sharp gradients, obtained by setting � = 10,
we could not manage to keep the error at an acceptably low level with FE/BL2D. In Fig 7
we compare the analitycal solution with those obtained by FE/BL2D and RRC.

4.3 Mesh alignment requirement

As we have previously mentioned, plasma modeling requires grids well aligned with the
magnetic �eld, due to the huge anisotropies in the transport coe�cients. For example, if
some error are made in evaluating the gradients parallel to the magnetic �eld, this can result
in an intolerable error in the parallel uxes, because the parallel conductivities are big.
Consequently, a good alignment level (de�ned as the minimum angle between the element
sides and the magnetic �eld) is a key demanding in the mesh generation procedure. This
is particularly true for FE/BL2D, because the Delaunay's type method implemented does
not guarantee a perfect alignment. In order to assess quantitatively the sensitivity of the
numerical scheme to the average misalignment, we mapped the function (6) on the rectangle
(x; y)�(0; 1)�(0; 100) (by a linear transformation of the segment y�(0; 1) into y�(0; 100). Then
we interpolated it on several uniform triangular meshes with comparable number of nodes
and di�erent misalignment levels produced by FE/BL2D. From the interpolated functions,
we tried to reconstruct the uxes �Kk(u)uy along the boundaries y=0 and y=100. Table
(1) shows clearly that, in order to keep the error in the calculated uid uxes to a level of
no more than some percent, it is necessary to keep the mesh average misalignment at less
than 1 degree.
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Misaligment (deg) Nodes Rel. error at y=100 Rel. error at y=0
1.9026 7003 4.46 0.47
0.7432 7660 0.05 0.46
0.1907 7173 0.03 0.73

Table 1: Relative errors on the uxes obtained by interpolating the function (6) on di�erently
aligned grids. It can be seen that the precision at y = 100 increases strongly with the
alignment, while this is not true at y = 0. This is probably due to the strong di�erence in
the uxes at the two sides: qy=0 = 0:5751 � 10�3, and qy=100 = �36:9. Getting at y = 0 the
same error level as at y = 100 would require a much �ner grid.

5 Tests in realistic geometry

In this section we describe some preliminary results obtained with the two codes on realistic
geometries. Up to now, no problem in complex geometry has been attacked with both the
codes contemporarily. Consequently, this section is not intended to provide a comparison
between the di�erent methods, but only to show some of the possibilities of FE/BL2D and
RRC and to provide some sugestions for fututre developments

5.1 Boundary layer widening

One of the problems related to the misalignment between the mesh and the magnetic �eld is
the introduction of numerical di�usivity perpendicular to B. To study the capacity of BL2D
to generate good quality meshes, we solved the equation

ut + (kku
2:5uk)k = 0 (7)

on the domain shown in Fig 8. It represents the portion of the scrape-o�-layer region of a
tokamak from the divertor leg up to the midplane. The initial condition was a stepwise func-
tion assuming two values, with the discontinuity perfectly aligned with the magnetic �eld.
As the di�usion was only parallel to the magnetic �eld. it is clear that the initial condition is
equal to the analytical steady state solution. If this problem is treated computationally, the
discontinuity will relax in a boundary layer due to the abovementioned numerical di�usivity.
The �nal thickness of this layer is extremely sensitive to the mesh quality.

We started the calculations with an initial uniform mesh of 6927 nodes, shown in Fig
8. During the solution process, BL2D reduced the number of nodes up to the �nal amount
of 883, keeping them mainly in the region of the discontinuity. Moreover, due to the good
alignment with the magnetic �eld, the �nal boundary layer still had a transverse dimension
comparable with the initial one (which, beiing the interpolation of a discontinuity, was equal
to the transverse spacing of the initial grid).

5.2 Pure convection test

Problems of pure convection provide severe tests for any adaptive computational scheme
based on a remeshing strategy. In fact each mesh adaptation involves an interpolation
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process which smoothes the solution. We studied the capacity of FE/BL2D to keep this
e�ect at a low level by solving the following equation:

ut + div(au) = 0 (8)

where the speed a = ab had constant modulus. The domain was the same as that of the
previous section, shown in Fig 8. The initial condition (see Fig 9) was the superposition of
a bell shaped hole on a at function located near the divertor plate (umax = 2; umin = 1).
This may be thoutgh of as a very rough representation of a Marfe instability. Fig 9 shows
how the perturbation propagated up to the vicinity of the X point, where we interrupted the
simulation. The initial mesh was uniform with 9936 nodes. Again, the adaptivity process
allowed a strong reduction in the number of nodes, down to the �nal value of 829. It can
be noticed that the initiallly at plateau was modi�ed during the simulation. This is due to
the presence of the toroidal component in the magnetic �eld.

5.3 Mesh evolution for a full poloidal cross section

We illustrate the capacity of RRC to �t complex geometries by showing the evolution of
an initial mesh to �t the full poloidal section of Alcator C-mod. The mesh can be non-
orthogonal or quasi-ortogonal, but we �nd that an hybrid mesh is optimal (see Fig 10). The
evolution of the source S(u) with the increase of the level of grid re�nement is shown in Figs
11 through 13.

6 Conclusions

In this paper we compared two di�erent adaptive methods developed to perform plasma uid
simulations on the particularly complex tokamak edge geometry. FE/BL2D is the coupling
of a �nite elements code with an automatic adaptive generator of triangular grids, while RRC
uses the �nite volumes method and, up to now, has performed calculations on quadrilateral
elements. We made a preliminary comparison on some test problems solved on rectangular
domains. In this case, RRC has shown to be more robust and faster than FE/BL2D, due
probably to a combination of both the conservativeness of the �nite volumes scheme and
the facility to �t rectangular domains with quadrilateral elements. A similar comparison on
more complex geometries is still lacking, even if the two codes have both been used to study
some problem on realistic domains. Such a comparison should be the object of a future
work. In particular, it would be interesting to understand how the robustness properties of
the �nite volumes method are retained when the computational domain assumes irregular
shapes and whether quadrilateral meshes are still satisfactory in this case, or it could be
desirable to couple the two approaches, using perhaps a �nite volumes scheme on triangular
grids.
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9 Figure captions

Fig 1. Example of convergence history for RRC code for the problem of section 4.2.
Fig 2. 	(R;Z) map used to produce the initial mesh for RRC.
Fig 3. Insertion of points on the 	(R;Z) map to create the actual grid.
Fig 4. Superposition of di�erent re�nement levels on the initial structured mesh of RRC
code.
Fig 5. Enlarged view of a sector of the re�nement zone of the mesh shown in FIg 4.
Fig 6. a)Pro�le and contour plot of the hot solution with bifurcations of section 4.1 as
obtained by RRC code. IT is also shown the source intensity contour plot. b) Same as a) for
the cold solution. c)Hot and cold solutions obtainhed by FE/BL2D. The parameter values
used for this run are: C = 50, u0 = 15, � = 4, qy=1 = 1,  = 0:03.
Fig 7. a) Solution of the analytical problem (section 4.2) as found by FE/BL2D. b) Top:
same as a) found by RRC. Bottom: Analytical solution.
Fig 8. Top: �nal mesh for the problem of the layer widening described in section 5.1. Bottom:
Steady state solution as found by FE/BL2D. The numbers near the di�erent boundary tract
mark the divertor plate (1), the �rst wall (2), the midplane (3), the plasma core (4) and the
private region (5).
Fig 9. Top left: Contour plot of the initial condition for the pure convection test (section
5.2). Top right: �nal state. The bell shaped hole has moved near the divertor plate. Bottom
left: the initial mesh (9936 nodes). Bottom right: the �nal mesh (829 nodes).
Fig 10. Exemple of hybrid initial mesh produced for RRC.
Fig 11. Evolution of the radiation function during RRC calculations. First stage, mesh with
0:8K elements.
Fig 12. Evolution of the radiation function during RRC calculations. Second stage, mesh
with 1:6K elements.
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Fig 13. Evolution of the radiation function during RRC calculations. Fifth stage: a) mesh
with 12:3K elements, b) contours.
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